InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If A + B + C = π, prove that tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C |
|
Answer» tan 2A + tan 2B + tan 2C Since A + B + C = π A + B = π – C 2A + 2B = 2π – 2C Tan (2A+2B) = tan (2π – 2C) Since tan (2π – C) = -tan C Tan (2A + 2B) = -tan 2C Now using formula, Tan (A + B) = \(\frac{tanA+ tanB}{1-tanA\,tanB}\) \(\frac{tan2A+ tan2B}{1-tan2A\,tan2B}\) = - tan 2C Tan 2A + tan 2B = -tan 2C + tan 2C tan 2B tan 2A Tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C = R.H.S |
|
| 2. |
If A + B + C = π, prove that sin 2A + sin 2B – sin 2C = 4cos A cos B sin C |
|
Answer» sin 2A + sin 2B – sin 2C = 2 sin (B + C) cos A + 2 sin (A + C) cos B - 2 sin (A + B) cos C Using formula, sin (A + B) = sin A cos B + cos A sin B = sin 2A + sin 2B - sin 2C Using formula sin2A = 2sinAcosA = 2sinAcosA + 2sinBcosB - 2sinCcosC Since A + B + C = π → B + C = 180 - A And sin(π – A) = sinA = 2sin(B + C)cos A + 2sin(A + C)cosB - 2sin(A + B)cosC = 2 ( sin B cos C + cos B sin C ) cos A + 2(sinAcosC + cosAsinC)cosB - 2(sinAcosB + cosAsinB )cosC = 2cosAsinBcosC + 2cosAcosBsinC + 2sinAcosBcosC + 2cosAcosBsinC– 2sinAcosBcosC – 2cosAsinBcosC = 2cosAcosBsinC + 2cosAcosBsinC = 4cosAcosBsinC = R.H.S |
|