Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Let `|(a,l,m),(l,b,n),(m,n,c)||(bc-n^2,mn-lc,ln-bm),(mn-lc,ac-m^2,ml-an),(ln-bm,lm-an,ab-l^2)|=64.` If the value of `|(2a+3l,3l+5m,5m+4a),(2l+3b,3b+5n,5n+4l),(2m+3n,3n+5c,5c+4m)|=lambda` then `[lambda/2]` equalsA. `120`B. `240`C. `360`D. `480`

Answer» Correct Answer - C
`(c )` `DeltaDelta^(2)=64`
`impliesDelta^(3)=64impliesDelta=4`
`|{:(2a+3l,3l+5m,5m+4a),(2l+3b,3b+5n,5n+4l),(2m+3n,3n+5c,5c+4m):}|`
`=[(2xx3xx5)+(3xx5xx4)]Delta`
`=(30+60)Delta`
`=90(4)`
`=360`
2.

Given A = [(4,2,5)(2,0,3)(-1,1,0)], write the value of get.(2AA-1).

Answer»

|2AA-1| = |2|3                 [:. AA-1 = 1]

= 8

3.

Let A be a square matrix of order 3 × 3. Write the value of |2A|, where |A| = 4.

Answer»

Since |2A| = 2n |A| where n is order of matrix A. 

Here |A| = 4 and n = 3 

∴ |2A| = 23 ×4 = 32

4.

Is A is square matrix of 3 and |2A| = k|A|, then the value of k.

Answer»

|2A| = k|A|, 

k = 23 = 8

5.

If A and B are square matrices of order 3 such that |A| = -1, |B| = 3,then find the value of |2AB|.

Answer»

|2AB| = 23 X |A| X |B|

=8 X (-1) X 3 = -24

6.

If Aij is the cofactor o the element aij of the determinant [(2, - 3, 5), (6, 0, 4), (1, 5, - 7)], then write the value of (i) a32A32(ii) M21

Answer»

(i) a32 A32 = 5 (-) (-22) = 110

(ii) M21 = 21 - 25 = - 4 

7.

If A is a square matrix and |A| = 2, then write the value of | AA'| , where A' is the transpose of matrix A.

Answer»

|AA|' = |A|. |A'| = |A|. |A|= |A|2 = 2 x 2 = 4. 

[since, | AB|=|A|.|B| and| A|=| A'|, where A and B are square matrices.]

8.

if A, B are square matrices of the same order, then prove that adj (AB) = (adj B) (adj A).

Answer»

We know that

(AB) adj(AB) = |AB| = adj(AB)(AB)  ..(i)

(AB)(adj B adj A)

= A.B adj B.adj A = A(B adj B) adj A

=A(|B|)adj A     [ :. B adj B = |B|I]

= |B|(A.adj A)

= |B| |A| I     [:. A adj A = |A|I]

= |A| |B| I

= |AB|I            ....(ii)

From (i) and (ii), we get

AB(adj AB) = AB(adj B.adj A)

Pre-multiplying both sides by(AB)-1,we get (AB)-1[(AB)adj AB]

= (AB)-1 [(AB)adj B.adj A]

or adj AB = adj B.adj A

9.

If A is square matrix of order 3 such that |adj A| = 64, find |A|.

Answer»

\(|A| = \pm8\)

Detailed Answer :

|adj A|= |A|n-1, where n is the order of the matrix

|A|2=64

Or,  \(|A| = \pm8\)

10.

If A is square matrix order 2 and |adj A| = 9, find |A|.

Answer»

|adj A| = |A|2-1

|A| = 9

11.

If Δ=|(5,3,8),(2,0,1),(1,2,3)| , write the minor of the element a23 .

Answer»

Minor of a23=|(5,3),(1,2)|=10-3=7.

12.

If `alpha, beta. gamma` are the roots of `x^3 + px^2 + q = 0,` where `q=0,` ther `Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)]` equalsA. `-p//q`B. `1//q`C. `p^(2)//q`D. None of these

Answer» Correct Answer - D
`(d)` We have `betaalpha+gammaalpha+alphabeta=0`
`Delta=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(betagamma,gammaalpha,alphabeta),(gammaalpha,alphabeta,betagamma),(alphabeta,betagamma,gammaalpha):}|`
`=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(betagamma+gammaalpha+alphabeta,gammaalpha,alphabeta),(gammaalpha+alphabeta+betagamma,alphabeta,betagamma),(alphabeta+betagamma+gammaalpha,betagamma,gammaalpha):}|` [using `C_(1)toC_(1)+C_(2)+C_(3)`]
`=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(0,gammaalpha,alphabeta),(0,alphabeta,betagamma),(0,betagamma,gammaalpha):}|=0` [all zero property].
13.

Let `x gt 0`, `y gt 0`, `z gt 0` are respectively the `2^(nd)`, `3^(rd)`, `4^(th)` terms of a `G.P.`and `Delta=|{:(x^(k),x^(k+1),x^(k+2)),(y^(k),y^(k+1),y^(k+2)),(z^(k),z^(k+1),z^(k+2)):}|=(r-1)^(2)(1-(1)/(r^(2)))` (where `r` is the common ratio), thenA. `k=-1`B. `k=1`C. `k=0`D. None of these

Answer» Correct Answer - A
`(a)` `Delta=x^(k)y^(k)z^(k)|{:(1,ar,a^(2)r^(2)),(1,ar^(2),a^(2)r^(4)),(1,ar^(3),a^(2)r^(6)):}|`
`=a^(3k)*r^(6k)*a^(3)r^(3)|{:(1,1,1),(1,r,r^(2)),(1,r^(2),r^(4)):}|`
`=a^(3(k+1))*r^(6k+3)*(1-r)(r-r^(2))(r^(2)-1)`
Clearly, `k=-1`
`:. Delta=r^(-2)(1-r)^(2)(r^(2)-1)`
`=(r-1)^(2)(1-(1)/(r^(2)))`
14.

If `w ne 1` is a cube root of unity and `Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0`, then value of `x` isA. `0`B. `2`C. `-1`D. None of these

Answer» Correct Answer - A
`(a)` Applying `C_(1)toC_(1)+C_(2)+C_(3)`.
We get `Delta=|{:(x+w^(2)+w+1,w,1),(w+w^(2)+1+x,w^(2),1+x),(1+x+w+w^(2),x+w,w^(2)):}|`
`=|{:(x,w,1),(x,w^(2),1+x),(x,x+w,w^(2)):}|` [using `1+w+w^(2)=0`]
`Delta` is clearly equal to `0` for `x=0`.
15.

if `omega!=1` is cube root of unity and x+y+z`!=`0 then `|[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|`=0 ifA. `x^(2)+y^(2)+z^(2)=0`B. `x+yomega+zomega^(2)=0` or `x=y=z`C. `x ne y ne z ne 0`D. x=2y=3z

Answer» Correct Answer - B
`(b)` As `1+omega+omega^(2)=0`
`D=|{:(-(x)/(omega^(2)),-y,-(z)/(omega)),(-y,-(z)/(omega),-(x)/(omega^(2))),(-(z)/(omega),-(x)/(omega^(2)),-y):}|=x^(3_+y^(3)+z^(3)-3xyz`
`=(1)/(2)(x+y+z){(x-y)^(2)+(y-z)^(2)+(z-x)^(2)}`
`=(x+y+z)(x+yomega+zomega^(2))(x+yomega^(2)+zomega)`
The determinant varnishes if `x=y=z` or `x+yomega+zomega^(2)=0`
16.

If `alpha` is a root of `x^4 = 1` with negative principal argument then the principal argument of `Delta(alpha) = |(1,1,1), (alpha^n, alpha^(n+1), alpha^(n+3)), (1/alpha^(n+1), 1/alpha^n, 0)|` isA. `(5pi)/(14)`B. `-(3pi)/(4)`C. `(pi)/(4)`D. `-(pi)/(4)`

Answer» Correct Answer - B
`(b)` Clearly `alpha=-i` where `i^(2)=-1`
So `Delta(alpha)=0+alpha^(2)+1-1-0-alpha^(3)`
`=(-i)^(2)+1-1-(-i)^(3)`
=-1+1-1-i=-1-i`
So, principal argument of `Delta(alpha)` is `-(3pi)/(4)`.
17.

Evaluate:|(cos15º,sin15º),(sin75º,cos75º)|

Answer»

Expanding the determinant, we get

cos 15° . cos 75° - sin 15° . sin 75°
= cos (15° + 75° ) = cos 90° = 0

[Note : cos (A + B) = cos A. cos B - sin . sin B]

18.

Evaluate \(\begin{vmatrix} \sqrt 6 & \sqrt5\\[0.3em] \sqrt{20} &\sqrt{24} \\[0.3em] \end{vmatrix}\) Evaluate |(√6 √5),(√20,√21)|

Answer»

Find determinant 

√6 × √ 24-√ 20 × √ 5 

√ 144-√ 100. =12-10 

=2.

19.

Evaluate: |(cos15°, sin15°), (sin 75°, cos 75°)|

Answer»

Expanding the determinant, we get 

cos 15° . cos 75° - sin 15° . sin 75° 

= cos (15° + 75° ) = cos 90° = 0

[since cos (A + B) = cos A. cos B – sinA . sin B]

20.

Evaluate x if : |(2,4)(5,1)(2x,4)(2x,4)(6,x)|.

Answer»

2-20 = 2x2 - 24

x = ±3

21.

In a triangle `ABC`, if `a,b,c` are the sides opposite to angles `A`, `B`, `C` respectively, then the value of `|{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}|` isA. `1`B. `-1`C. `0`D. `acosA+bcosB+c cosC`

Answer» Correct Answer - C
`(c )` `|{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}|`
Apply `C_(1)toC_(1)+C_(3)` and using projection rule.
`D=|{:(bcosC,a,c cosB+bcosC),(c cosA,b,acosC+c cosA),(acosB,c,bcosA+acosB):}|`
`=|{:(bcosC,a,a),(c cosA,b,b),(acosB,c,c):}|=0`
22.

`|[1/c,1/c,-(a+b)/c^2],[-(b+c)/c^2,1/a,1/a],[(-b(b+c))/(a^2c),(a+2b+c)/(ac),(-b(a+b))/(ac^2)]|` isA. dependent on `a,b,c`B. dependent on `a`C. dependent on `b`D. independent on `a,b` and `c`

Answer» Correct Answer - A
`(a)` Multiplying `C_(1)` by `a`, `C_(2)` by `b` and `C_(3)` by `c`, we obtain
`Delta=(1)/(abc)|{:((a)/(c),(b)/(c),-(a+b)/(c)),(-(b+c)/(a),(b)/(a),(c)/(a)),(-(b(b+c))/(ac),(b(a+2b+c))/(ac),-(b(a+b))/(ac)):}|`
Applying `C_(1)toC_(1)+C_(2)+C_(3)` we get
`Delta=(1)/(abc)|{:(0,(b)/(c),-(a+b)/(c)),(0,(b)/(a),(c)/(a)),(0,(b(a+2b+c))/(ac),-(b(a+b))/(ac)):}|`
This shows that `Delta` is independent of `a`, `b` and `c`.
23.

`{:("If",a = 1 + 2 + 4 + ..."to n terms"),(,b = 1 + 3 + 9 + ..."to n terms"),(,c =1 + 5 + 25+ ..."to n terms"):}` then `|(a,2b,4c),(2,2,2),(2^(n),3^(n),5^(n))|=`A. `(30)^(n)`B. `(10)^(n)`C. `0`D. `2^(n)+3^(n)+5^(n)`

Answer» Correct Answer - C
`(c )` a=2^(n)-1`, `b=(3^(n-1))/(2)`, `c=(5^(n)-1)/(4)`
`:.Delta=|{:(a,2b,4c),(2,2,2),(2^(n),3^(n),5^(n)):}|`
`Delta=2*|{:(2^(n)-1,3^(n)-1,5^(n)-1),(1,1,1),(2^(n),3^(n),5^(n)):}|=0`
24.

If `a_1, a_2, a_3,54,a_6,a_7, a_8, a_9`are in H.P., and `D=|a_1a_2a_3 5 4a_6a_7a_8a_9|`, then the value of `[D]i sw h e r e[dot]`represents the greatest integer functionA. `4`B. `5`C. `6`D. `7`

Answer» Correct Answer - B
`(b)` We have `D=|{:(a_(1),a_(2),a_(3)),(5,4,a_(6)),(a_(7),a_(8),a_(9)):}|`
Since `a_(n)=(20)/(n)`, `d=(1)/(20)`
Hence `D=|{:(20,(20)/(2),(20)/(3)),((20)/(4),(20)/(5),(20)/(6)),((20)/(7),(20)/(8),(20)/(9)):}|=((20)^(3))/(4xx7)|{:(1,(1)/(2),(1)/(3)),(1,(4)/(5),(2)/(3)),(1,(7)/(8),(7)/(9)):}|`
Applying `R_(1)toR_(1)-R_(2)` and `R_(2)toR_(2)-R_(3)`
`=((20)^(3))/(4xx7)|{:(0,(-3)/(10),(-1)/(3)),(0,(-3)/(40),(-1)/(9)),(1,(7)/(8),(7)/(9)):}|`
`=(50)/(21)`