Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Evaluate \(\begin{vmatrix}2 &5 &8 \\ 6&10 &9\\ 4& 6& 1 \end{vmatrix}\)1. 302. 153. 244. 21

Answer» Correct Answer - Option 1 : 30

Concept:

Let A is any square matrix, A = \(\begin{vmatrix} a_{11} &a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}\) 

|A| = a11(a22 a33 - a23 a32) - a12(a21 a33 - a23 a31) + a13(a21 a32 - a22 a31)

 

 

Calculation:

|A| = \(\begin{vmatrix} 2 & 5 & 8 \\ 6 & 10 & 9 \\ 4 &6& 1 \end{vmatrix}\) 

R2 = R2 - R1

⇒ |A| = \(\begin{vmatrix} 2 & 5 & 8 \\ 4 & 5 & 1 \\ 4 &6& 1 \end{vmatrix}\)

R2 = R2 - R3

⇒ |A| = \(\begin{vmatrix} 2 & 5 & 8 \\ 0 & -1 & 0 \\ 4 &6& 1 \end{vmatrix}\)

Expanding along  R1

⇒ |A| = 2(-1) - 5(0) + 8(-(-4))

⇒ |A| = -2 + 32

⇒ |A| = 30

 

Any scalar multiplied to a row or a column can be taken out, e.g. 

\(\begin{vmatrix} ka_{11} &ka_{12} & ka_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}\) = k\(\begin{vmatrix} a_{11} &a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}\) = k[a11(a22 a33 - a23 a32) - a12(a21 a33 - a23 a31) + a13(a21 a32 - a22 a31)]

Addition or subtraction in a row or column can be written as:

\(\begin{vmatrix} a_{11}+z &a_{12} & a_{13}\\ a_{21}+y & a_{22} & a_{23}\\ a_{31}+x & a_{32} & a_{33} \end{vmatrix}\) = \(\begin{vmatrix} a_{11} &a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}\)\(\begin{vmatrix} z &a_{12} & a_{13}\\ y & a_{22} & a_{23}\\ x & a_{32} & a_{33} \end{vmatrix}\)

Area of a triangle with points (a, b), (x, y) and (p, q) = \({1\over2}\begin{vmatrix} a &b & 1\\ x & y& 1\\ p & q & 1 \end{vmatrix}\)

Value of determinant does not change with the row or column additions or subtractions within themselves.

If Two rows or columns are same or multiple of each other then the value of the determinant is zero.

The determinant can be possible only for a square matrix. 

2.

Find the determinant of A = \(\begin{bmatrix} 2 &4 \\ 1 & 5 \end{bmatrix}\)1. 62. 43. 24. 1

Answer» Correct Answer - Option 1 : 6

Calculation:

A = \(\begin{bmatrix} 2 &4 \\ 1 & 5 \end{bmatrix}\)

⇒ |A| = \(\begin{vmatrix} 2 &4 \\ 1 & 5 \end{vmatrix}\)

⇒ |A| = 2 × 5 - 1 × 4

⇒ |A| = 10 - 4 

⇒ |A| = 6

3.

Find the determinant of A = \(\begin{bmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{bmatrix}\), if x + y = 0

Answer» Correct Answer - Option 1 : 0

Concept:

Properties of determinants:

  • If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
  • If we interchange any two rows (columns) of a matrix, then the determinant is multiplied by -1.
  • If any two rows (columns) of a matrix are same then the value of the determinant is zero.

 

Calculation:

A = \(\begin{bmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{bmatrix}\) 

|A| = \(\begin{vmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{vmatrix}\)

c3 = c3 - c1 - c2

|A| = \(\begin{vmatrix} x^2 & y^2 & -(2xy+x^2+y^2)\\ x & y &0-x-y\\1&1&2-1-1\end{vmatrix}\)

|A| = \(\begin{vmatrix} x^2 & y^2 & -(x+y)^2\\ x & y &-(x+y)\\1&1&0\end{vmatrix}\)

|A| = \(\begin{vmatrix} x^2 & y^2 & 0\\ x & y &0\\1&1&0\end{vmatrix}\)

|A| = 0

4.

If \(\rm m = \left[ \begin{array}{cc} 2 &0\\ 0&1\end{array}\right] and \ n= \left[ \begin{array}{cc} 0 &1\\ -2&0\end{array}\right]\) then what is the value of the determinant of m sinθ + n cosθ 1. 12. -13. 34. 2

Answer» Correct Answer - Option 4 : 2

Calculation: 

m sinθ + n cosθ = sin θ \(\rm \left[ \begin{array}{cc} 2 &0\\ 0&1\end{array}\right]\) + cos θ \(\rm \left[ \begin{array}{cc} 0 &1\\ -2&0\end{array}\right]\)

\(\rm \left[ \begin{array}{cc} 2\sin θ &0\\ 0&\sin θ\end{array}\right]\)+\(\rm \left[ \begin{array}{cc} 0 &\cosθ\\ -2\cosθ&0\end{array}\right]\)

\(\rm \left[\begin{array}{cc} 2\sin θ &\cos θ\\ -2\cos θ&\sin θ\end{array}\right]\)

Now,

|m sinθ + n cosθ| = \(\rm \left| \begin{array}{cc} 2\sin θ &\cos θ\\ -2\cos θ&\sin θ\end{array}\right|\)

\(2\sin^2\theta \) + \(\rm 2 cos^2\theta \)

= 2(\(\sin ^2 \theta +\cos^2\theta \))

= 2

Hence, option (4) is correct. 

5.

Height of a triangle is decreased by 30 percent. If the net increase in the area of the triangle is of 5 percent, then by how much percentage the base of triangle is increased?1. 25 percent2. 66.67 percent3. 33.33 percent4. 50 percent

Answer» Correct Answer - Option 4 : 50 percent

Given:

The height of the triangle decreased = 30%

Formula used:

The area of the triangle = (1/2) × (b × h)     (Where b = The base of the triangle, h = The height of the triangle)

Calculation:

Let us assume the base of the triangle increased by X% and the area of the triangle is A

⇒ The area of the triangle = A = bh/2

⇒ \(b\ = {2A\over h}\)     ----(1)

⇒ When the area of the triangle increase by 5%

⇒ \({A\ \times 1.05}\ = {(h\ \times 0.7)\ \times b\over2}\)

⇒ b = \(b\ =\ {2.1A\over 0.7h}\ =\ {3A\over h}\)     ----(2)

⇒ The increment in the base of the triangle = \({({3A\over h}\ - {2A\over h})\over {2A\over h}} \times 100\) = 50%

∴ The required result will be 50%.

6.

A and B are determinants of order of 2, such that A = 3B. If |B| = 1. Find |A|1. 32. 93. 14. Can't be determined

Answer» Correct Answer - Option 2 : 9

Concept:

Suppose two matrix A and B of order n.

Let A = kB then, |A| = kn|B|.

 

Calculation:

Given: A = 3B and |B| = 1

To find:|A|

We know that for n order matrix, |A| = kn|B|. If A = kB

A = 3B

Taking determinants both sides, we get

|A| = |3B|

So, |A| = 32|B|

⇒ |A| = 9

7.

If A and B are square matrices of order 2 such that |A| = 2, |B| = 4 then |2 AB| is equal to - 1. 162. 243. 324. 64

Answer» Correct Answer - Option 3 : 32

Concept:

Property of determinant of a matrix:

  • Let A be a matrix of order n × n then det(kA) = kdet(A)
  • If A and B are two square matrices then |AB| = |A||B|

 

Calculation:

Given: A and B are square matrices of order 2 such that |A| = 2, |B| = 4 

Here, we have to find the value of |2 AB|

As we know that, if A and B are two determinants of order n, then |AB| = |A||B|

⇒ |2 AB| = |2A||B|

As we know that, if A is a matrix of order n, then |kA| = kn |A|, where k ∈ R.

Here n = 2 So, |2A| = 22 ⋅ |A| = 4|A|

⇒ |2 AB| = |2A||B|

= 4|A||B|

= 4 × 2 × 4

= 32

8.

If x y z are all different and not equal to zero and \(\left| {\begin{array}{*{20}{c}} {1 + x}&1&1\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\) then the value of x-1 + y-1 + z-1 is equal to1. -12. - x - y - z3.  x-1y-1z-14. xyz

Answer» Correct Answer - Option 1 : -1

Calculation:

\(\left| {\begin{array}{*{20}{c}} {1 + x}&1&1\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\)

R1 = R1 - R2

\(\left| {\begin{array}{*{20}{c}} {x}&-y&0\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\)

R2 = R2 - R3

\(\left| {\begin{array}{*{20}{c}} {x}&-y&0\\ 0&{y}&-z\\ 1&1&{1 + z} \end{array}} \right| = 0\)

Now, Expanding along R1, we get

⇒ x [y(1 + z) - (-z)] - (-y) [0 - (-z)] + 0 = 0

⇒ x [y + yz + z] + y [z] = 0

⇒ xy + xyz + xz + yz = 0

Dividing by xyz

⇒ \(\rm {1\over z}+ 1 +{1\over y}+ {1\over x} = 0\)

⇒ \(\boldsymbol{\rm x^{-1}+ y^{-1}+ z^{-1} = -1}\)

9.

If the value of the determinant \(\begin{vmatrix} 5 & \rm k\\ 3 & 3 \end{vmatrix}\)is 24, find the value of k.1. 22. 33. -34. -4

Answer» Correct Answer - Option 3 : -3

Concept:

If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}} \end{array}} \right]\) then determinant of A is given by:

|A| = a11 × a22 – a21 × a12

Calculation:

Let A = \(\begin{vmatrix} 5 & \rm k\\ 3 & 3 \end{vmatrix}\)

Given that, the value of the determinant is 24.

|A| = 24

⇒ 15 - 3k = 24

⇒15 - 24 = 3k

⇒ 3k = -9

∴ k = -3

10.

Find the determinant of the matrix \(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)1. x + y + z2. x2 + y2 + z23. 04. (x + y + z)2 - xyz

Answer» Correct Answer - Option 3 : 0

Concept:

Properties of Determinant of a Matrix:

  • If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
  • For any square matrix say A, |A| = |AT|.
  • If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
  • If any two rows (columns) of a matrix are same then the value of the determinant is zero.

 

Calculation:

\(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)

Apply R1 → R1 + R2 + R3, We get

\(\begin{vmatrix} \rm 0 & \rm 0 & \rm 0\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)

As we can see that the entry of the first row is zero. 

We know that,

If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.

∴ \(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\) = 0

11.

Find the value of det(22A) for the following matrix:\({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 2&3&1\\ { - 1}&0&2\\ { - 3}&1&2 \end{array}} \right]\)1. 13402. -12823. -10884. 1542

Answer» Correct Answer - Option 3 : -1088

Concept:

Property of determinant of a matrix:

Let A be a matrix of order n × n then det(kA) = kdet(A)


Calculation:

Given: \({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 2&3&1\\ { - 1}&0&2\\ { - 3}&1&2 \end{array}} \right]\)

Here the order of the matrix is 3.

Now,

det(A) = 2(0 - 2) - 3(-2 + 6) + 1(-1 + 0)

= 2(-2) - 3(4) + 1(-1)

= - 4 - 12 - 1

= -17

Now using the property the value of det(22A) is:

det(22A) = det(4A) = 43 det(A)

= 64 × -17

= -1088

12.

The inverse of the 2 x 2 matrix \(\begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}\) is1. \( \frac{1}{10}\begin{bmatrix} 1 & -3\\ -4 & 2 \end{bmatrix}\)2. \( \frac{1}{10}\begin{bmatrix} 1 & 3\\ 4 & 2 \end{bmatrix}\)3. \( \frac{1}{10}\begin{bmatrix} -1 & -3\\ -4 & -2 \end{bmatrix}\)4. \( \frac{1}{10}\begin{bmatrix} -1 & 3\\ 4 & -2 \end{bmatrix}\)

Answer» Correct Answer - Option 4 : \( \frac{1}{10}\begin{bmatrix} -1 & 3\\ 4 & -2 \end{bmatrix}\)

Concept:

For a 2 x 2 matrix there is a short-cut formula for inverse as given 

\(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\)

Calculation:

As we know that inverse of matrix \(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\)

\({\begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}}^{-1}= \frac{1}{(2.1-4.3)}\begin{bmatrix} 1 & -3\\ -4 & 2 \end{bmatrix}\)

⇒ \({\begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}}^{-1}= \frac{1}{-10}\begin{bmatrix} 1 & -3\\ -4 & 2 \end{bmatrix}\)

⇒ \({\begin{bmatrix} 2 & 3\\ 4 & 1 \end{bmatrix}}^{-1}= \frac{1}{10}\begin{bmatrix} -1 & 3\\ 4 & -2 \end{bmatrix}\)

Hence option 4 is the correct answer.

13.

If A is a square matrix of order 5 and det A = 1/9, then what is det |(3A)-1| equal to?  1. 1/812. 1/273. 1/94. 1/125

Answer» Correct Answer - Option 2 : 1/27

Concept:

Let A is a square matrix having order n.
det A-1 = 1/(det A)
 

Calculation:

Here, det A = 1/9

det |(3A)-1| = (3-1)5 det (A-1) .....(∵ Order = 5)

\(\frac {1}{3^5}\)× 1/detA

\(\frac {1}{3^5}\)× 9

= 1/33

= 1/27

Hence, option (2) is correct.

14.

What is the value of the determinant \(\left |\begin{array}{ccc} \rm x+2 & \rm x+3 & \rm x+5 \\ \rm x+4 &\rm x+6 &\rm x+9 \\ \rm x+8 &\rm x+11 &\rm x+15 \end{array}\right|\)1. x - 22. -23. x+24. 2

Answer» Correct Answer - Option 2 : -2

Calculation:

Let Δ = \(\left |\begin{array}{ccc} \rm x+2 & \rm x+3 & \rm x+5 \\ \rm x+4 &\rm x+6 &\rm x+9 \\ \rm x+8 &\rm x+11 &\rm x+15 \end{array}\right|\)

\(\begin{aligned} \\ &\text { By applying } \rm C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}\\ &=\left|\begin{array}{ccc} \rm x+1 & 1 & 3 \\ \rm x+3 & 2 & 5 \\ \rm x+7 & 3 & 7 \end{array}\right|\\ & \end{aligned}\)

\(\text { By applying } \rm R_{2} \rightarrow R_{2}-R_{1}, \text { and } R_{3} \rightarrow R_{3}-R_{2}\\ \)

\(= \left|\begin{array}{ccc} \rm x+1 & 1 & 3 \\ 2 & 1 & 2 \\ 4 & 1 & 2 \end{array}\right|\)

= (x + 1) (0) - 1 (4 - 8) + 3(2 - 4)

= 4 - 6

= -2

Hence, option (2) is correct.