InterviewSolution
Saved Bookmarks
| 1. |
Find the determinant of A = \(\begin{bmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{bmatrix}\), if x + y = 0 |
|
Answer» Correct Answer - Option 1 : 0 Concept: Properties of determinants:
Calculation: A = \(\begin{bmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{bmatrix}\) |A| = \(\begin{vmatrix} x^2 & y^2 & -2xy\\ x & y &0\\1&1&2\end{vmatrix}\) c3 = c3 - c1 - c2 |A| = \(\begin{vmatrix} x^2 & y^2 & -(2xy+x^2+y^2)\\ x & y &0-x-y\\1&1&2-1-1\end{vmatrix}\) |A| = \(\begin{vmatrix} x^2 & y^2 & -(x+y)^2\\ x & y &-(x+y)\\1&1&0\end{vmatrix}\) |A| = \(\begin{vmatrix} x^2 & y^2 & 0\\ x & y &0\\1&1&0\end{vmatrix}\) |A| = 0 |
|