Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If log 2=.30103,find the number of digits in 256 .

Answer»

log 256 =56log2=(56*0.30103)=16.85768. 

Its characteristics is 16. 

Hence,the number of digits in 256 is 17.

2.

If log10 2=0.30103,find the value of log10 50.

Answer»

log10 50=log10 (100/2)=log10 100-log10 2=2-0.30103=1.69897.

3.

Find the value of x which satisfies the relation Log10 3+log10 (4x+1)=log10 (x+1)+1

Answer»

log10 3+log10 (4x+1)=log10 (x+1)+1 

Log10 3+log10 (4x+1)=log10 (x+1)+log10 (x+1)+log10 10 

Log10 (3(4x+1))=log10 (10(x+1)) 

=3(4x+1)=10(x+1)=12x+3 

=10x+10 

=2x=7

x=7/2

4.

Simplify:[1/logxy(xyz)+1/logyz(xyz)+1/logzx(xyz)]

Answer»

Given expression: logxyz xy+ logxyz yz+ logxyz zx 

= logxyz (xy*yz*zx)=logxyz (xyz)2 

2logxyz(xyz)=2*1=2

5.

3log8x=​​​​​​​​log4(x+6)

Answer»

3 log8x = log4 (x+6)

⇒ 3 log23x = log22 (x+6) (∵ logamb = 1/m logab)

⇒ 3/3 log2x = 1/2 log2 (x+6)

⇒ 2 log2x = log2 (x+6)

⇒ log2x2 = log2 (x+6)  (∵ n log a = log an)

⇒ x2 = x+6  (By taking anti log)

⇒ x2 - x - 6 = 0

⇒ x2 - 3x + 2x - 6 = 0

⇒ x(x-3) + 2(x-3) = 0

⇒ (x+2) (x-3) = 0

⇒ x+2 = 0 or x-3 = 0

⇒ x = -2(Not possible) or x = 3)

(∵ Domain of log x is x > 0)

Hence, solution is x = 3

6.

Evaluate log34 34

Answer»

We know that loga a=1,so log34 34=0. 

7.

Evaluate: log3 27

Answer»

Let log3 27=33 or n=3. 

ie, log3 27 = 3.