InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If log 2=.30103,find the number of digits in 256 . |
|
Answer» log 256 =56log2=(56*0.30103)=16.85768. Its characteristics is 16. Hence,the number of digits in 256 is 17. |
|
| 2. |
If log10 2=0.30103,find the value of log10 50. |
|
Answer» log10 50=log10 (100/2)=log10 100-log10 2=2-0.30103=1.69897. |
|
| 3. |
Find the value of x which satisfies the relation Log10 3+log10 (4x+1)=log10 (x+1)+1 |
|
Answer» log10 3+log10 (4x+1)=log10 (x+1)+1 Log10 3+log10 (4x+1)=log10 (x+1)+log10 (x+1)+log10 10 Log10 (3(4x+1))=log10 (10(x+1)) =3(4x+1)=10(x+1)=12x+3 =10x+10 =2x=7 x=7/2 |
|
| 4. |
Simplify:[1/logxy(xyz)+1/logyz(xyz)+1/logzx(xyz)] |
|
Answer» Given expression: logxyz xy+ logxyz yz+ logxyz zx = logxyz (xy*yz*zx)=logxyz (xyz)2 2logxyz(xyz)=2*1=2 |
|
| 5. |
3log8x=log4(x+6) |
|
Answer» 3 log8x = log4 (x+6) ⇒ 3 log23x = log22 (x+6) (∵ logamb = 1/m logab) ⇒ 3/3 log2x = 1/2 log2 (x+6) ⇒ 2 log2x = log2 (x+6) ⇒ log2x2 = log2 (x+6) (∵ n log a = log an) ⇒ x2 = x+6 (By taking anti log) ⇒ x2 - x - 6 = 0 ⇒ x2 - 3x + 2x - 6 = 0 ⇒ x(x-3) + 2(x-3) = 0 ⇒ (x+2) (x-3) = 0 ⇒ x+2 = 0 or x-3 = 0 ⇒ x = -2(Not possible) or x = 3) (∵ Domain of log x is x > 0) Hence, solution is x = 3 |
|
| 6. |
Evaluate log34 34 |
|
Answer» We know that loga a=1,so log34 34=0. |
|
| 7. |
Evaluate: log3 27 |
|
Answer» Let log3 27=33 or n=3. ie, log3 27 = 3. |
|