InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 501. |
The ratio between the radius and height of a cone is 4 : 3. Find the ratio between lateral surface area and total surface area of the cone?1. 4/92. 3/73. 5/94. 2/7 |
|
Answer» Correct Answer - Option 3 : 5/9 Given: The ratio of radius and height = 4 : 3 Formula used: The lateral surface area of cone = πrl The total surface area of cone = πr(l + r) l2 = r2 + h2 Where, r = radius of cone l = slant height of the cone Calculation: Let r = 4 and h = 3 l2 = r2 + h2 ⇒ l2 = 42 + 32 ⇒ l = 5 The ratio between lateral surface area and total surface area of the cone ⇒ (πrl)/[ πr(l + r)] ⇒ l/(l + r) ⇒ 5/(5 + 4) ⇒ 5/9 ∴ The ratio between lateral surface area and total surface area of the cone is 5/9. |
|
| 502. |
Find the lateral surface area (in cm2) of a right circular cone which has base of perimeter 44 cm and height 24 cm?1. 450 cm22. 550 cm23. 440 cm24. 500 cm2 |
|
Answer» Correct Answer - Option 2 : 550 cm2 Given: The perimeter of the base of a right circular cone is 44 cm. Height of the cone = 24 cm Formula used: The circumference of the base of the cone = 2πr The curved surface area of the cone = πrl The slant height of the cone (l) = √(h2 + r2) Where r → radius of the cone h → height of the cone l → slant height of the cone Calculations: According to the question, The circumference of the base of the cone = 44 cm. ⇒ 2πr = 44 ⇒ r = 7 cm The slant height of the cone = √(h2 + r2) ⇒ l = √(242 + 72) = √(625) = 25 So, the curved surface area of the cone = πrl ⇒ (22/7) × 7 × 25 = 550 cm2 ∴ The curved surface area of the cone is 550 cm2 |
|
| 503. |
The volume of a cone is 154 cm3 and its height is 12 cm. Find the lateral surface area of the cone?1. 157.5 cm22. 142.5 cm23. 137.5 cm24. 150.5 cm2 |
|
Answer» Correct Answer - Option 3 : 137.5 cm2 Given: Volume of cone = 154 cm3 Height of cone = 12 cm Concept: Using the volume formula, calculate the radius of the cone and then calculate the lateral height. Formula used: Volume of cone = (1/3)πr2h Lateral surface area of cone = πrl Lateral height (l) = √(r2 + h2) Calculation: ∵ Volume of cone = (1/3)πr2h ⇒ 154 = (1 × 22 × r2 × 12)/(3 × 7) ⇒ 154 × 3 × 7 = 22 × r2 × 12 ⇒ r2 = (154 × 3 × 7)/( 22 × 12) ⇒ r2 = 49/4 ⇒ r = √(49/4) = 7/2 ∵ Lateral height (l) = √(r2 + h2) ⇒ l = √[(7/2)2 + (12)2] ⇒ l = √[144 + (49/4)] ⇒ l = √[(576 + 49)/4] ⇒ l = √(625/4) ⇒ l = 25/2 cm ∴ Lateral surface area of cone = πrl = (22/7) × (7/2) × (25/2) = 275/2 cm2 = 137.5 cm2 |
|
| 504. |
The volume of a sphere is 38,808 cm3. Then find the lateral surface area of a hemisphere if the radius of a sphere is twice of a hemisphere.1. 693 cm22. 1296 cm23. 1456 cm24. 496 cm2 |
|
Answer» Correct Answer - Option 1 : 693 cm2 Given: Volume of a sphere is 38,808 cm3 Radius of a sphere is twice of the hemisphere. Formula Used: Volume of a sphere = 4/3πr3 Lateral surface area of a hemisphere = 2πr2 Calculation: Volume of a sphere = 4/3πr3 ⇒ 4/3π r3 = 38,808 ⇒ r3 = (38,808 × 3)/ 4π ⇒ r3 = 9261 ⇒ r = 21 As radius of a sphere is twice of a hemisphere. ⇒ radius(circle) = 2 radius(hemisphere) ⇒ 21 = 2 radius(hemisphere) ⇒ radius(hemisphere) = 21/2 Now, Lateral surface area of a hemisphere = 2πr2 ⇒ Lateral surface area of a hemisphere = 2π × (21/2)2 ⇒ Lateral surface area of a hemisphere = 693 ∴ The lateral surface area of a hemisphere is 693 cm2. |
|
| 505. |
A room is 26 m long and 15 m wide. A 14 m square carpet is laid on the floor. Find the area of the room which is not carpeted?1. 1902. 1943. 2004. 184 |
|
Answer» Correct Answer - Option 2 : 194 Given: Length of room = 26 m Breadth of room = 15 m Side of carpet = 14 m Formula Used: Area of a rectangle = Length × Breadth Area of a square = (Side)2 Calculation: Area of the room = 26 × 15 m2 ⇒ 390 m2 Area of carpet = 14 m2 ⇒ 196 m2 Area in room where carpet is not present = Area of room – Area of carpet laid ⇒ 390 m2 – 196 m2 ⇒ 194 m2 ∴ The area of room which is not carpeted is 194 m2. |
|
| 506. |
किसी कमरे के आधार का क्षेत्रफल 4 मी. `xx` 3 मी. है तथा ऊंचाई 3 मी. है। सभी दीवारें तथा छत को रंगा गया। रंगें भाग का क्षेत्रफल ज्ञात करें?A. `66 m^(2)`B. `54 m^(2)`C. `42 m^(2)`D. `33 m^(2)` |
|
Answer» Correct Answer - B Area of floor `implies 3xx4=12m^(2)` Height `implies3 m` `:.` कमरे की दीवारों का क्षेत्रफल `implies` Perimeter of floor `xx` height of room `implies2(l+b)xxh` `implies l=` length `=4m` `b=` breadth `=3m` ltbr. `h=` height `=3m` `:.` Area of walls `implies 2(4+3)xx3=42m^(2)` Area of paintaed part `=42m^(2)+12m^(2)=54m^(2)` |
|
| 507. |
The base of a triangular walls is half of its height. If the cost of painting it at Rs. 150 per 100 Square meter is Rs. 600, then what is the base?1. 20 m2. 40 m3. 60 m4. 80 m |
|
Answer» Correct Answer - Option 1 : 20 m Given Base = height/2 Concept Area of triangle = (1/2) × base × height Calculation Let height of triangle is h m So, base is (h/2) m Area of triangle = (1/2) × (h/2) × h ⇒ h2/4 m2 Rs. 150 = 100 m2 ⇒ Rs. 1 = 100/150 ⇒ Rs. 600 = (100/150) × 600 m2 ⇒ Rs. 600 = 400 m2 Now, 400 = h2 /4 ⇒ 1600 = h2 ⇒ √1600 = h ⇒ 40 m = h Base = 40/2 ⇒ 20 m |
|
| 508. |
Directions: Read the condition given below and answer the question based on it.The cube of volume 216 cm cube is placed one after another. What is the ratio of lateral surface area three cubes placed together to total surface area of all two cube placed together?1. 5 ∶ 42. 4 ∶ 53. 7 ∶ 64. 6 ∶ 7 |
|
Answer» Correct Answer - Option 2 : 4 ∶ 5 Given: The volume of each cube is 216 cm cube Formula Used: Side = ∛ Volume of cube Lateral surface area of cuboids = 2 × (l + b) × h Total surface area of cuboids = 2 × (lb + bh + hl) Calculation: When three cubes are place side by side so, the breadth and height of resulting cuboids will be same as cube but length will change ∴ Length of cuboid = 6 + 6 + 6 = 18 cm So, length = 18 cm, breadth = 6 cm and height = 6 cm ∴ Lateral surface area of cuboids = 2 × (18 + 6) × 6 = 288 cm Now, When two cubes are place side by side so, the breadth and height of resulting cuboids will be same as cube but length will change ∴ Length of cuboid = 6 + 6 = 12 cm So, length = 12 cm, breadth = 6 cm and height = 6 cm ∴ Total surface area of cuboids = 2 × (12 × 6 + 6 × 6 + 6 × 12) = 360 cm square Now, the ratio of lateral surface area three cubes placed together to total surface area of all two cube placed together ∴ Required ratio = 288 ∶ 360 = 4 ∶ 5 Hence, option (2) is correct |
|
| 509. |
Directions: Read the condition given below and answer the question based on it.Three cubes of volume 216 cm cube is placed one after another. The total surface area of resulting cuboids is what percent of the surface area of the single cube?1. 233 \(\frac{1}{3}\)%2. 189 \(\frac{1}{3}\)%3. 288 \(\frac{1}{3}\)%4. 169 \(\frac{1}{3}\)% |
|
Answer» Correct Answer - Option 1 : 233 \(\frac{1}{3}\)% Given: The volume of each cube is 216 cm cube Formula Used: Side = ∛Volume of cube Surface area of cube = 6 × (side) 2 Total Surface area of cuboids = 2 × (lb + bh + hl) Required percentage = (First quantity/second quantity) × 100 Calculation: The volume of cube is 216 cm cube ∴ Side of cube = ∛ 216 = 6 cm Now, surface area of cube = 6 × (6) 2 = 216 cm square When three cubes are place side by side so, the breadth and height of resulting cuboids will be same as cube but length will change ∴ Length of cuboid = 6 + 6 + 6 = 18 cm So, length = 18 cm, breadth = 6 cm and height = 6 cm ∴ Total Surface area of cuboids = 2 × (18 × 6 + 6 × 6 + 6 × 18) = 504 cm square Now, required percentage = (504/216) × 100 = 233\(\frac{1}{3}\)% Hence, option (1) is correct |
|
| 510. |
A cone, cylinder, and hemisphere have the same base and the height of the cylinder is double the height of the hemisphere, but half of the height of the cone. Find the ratio of the volumes of the cone to the cylinder to the hemisphere?1. 3 ∶ 5 ∶ 22. 6 ∶ 4 ∶ 23. 4 ∶ 6 ∶ 24. 1 ∶ 3 ∶ 1 |
|
Answer» Correct Answer - Option 3 : 4 ∶ 6 ∶ 2 Given: Radius of a cone = radius of a Cylinder = radius of a hemisphere Height of the cylinder = 2 × radius of the hemisphere Height of the cone = 2 × height of the cylinder Formula used: Volume of cone = (1/3)πr2h Volume of cylinder = πr2h Volume of hemisphere = (2/3)πr3 Calculation: Let, Height of hemisphere or radius of the hemisphere be r Radius of cone = radius of Cylinder = radius of hemisphere = r Height of cylinder = 2r Height of cone = 4r The volume of cone ∶ Volume of cylinder ∶ Volume of the hemisphere = (1/3)πr2h ∶ πr2h ∶ (2/3)πr3 = [(1/3) × r2 × 4r] ∶ [r2 × 2r] ∶ [(2/3) × r3] = (4/3) ∶ 2 ∶ (2/3) = 4 ∶ 6 ∶ 2 ∴ The ratio of the volumes of the cone to cylinder to hemisphere is 4 ∶ 6 ∶ 2. |
|
| 511. |
From a prism of square base of side length 7 cm and height 10 cm, a cylinder of diameter 4.2 cm and height 10 cm is carved out. Find the volume of the remaining solid?1. 376.4 cm32. 251.4 cm33. 313.4 cm34. 351.4 cm3 |
|
Answer» Correct Answer - Option 4 : 351.4 cm3 Given: Base of prism is square Side of square base = 7 cm Height of prism = 10 cm Diameter of cylinder = 4.2 cm Radius of cylinder = 4.2/2 = 2.1 cm Height of cylinder = 10 cm Concept: The volume of the remaining solid is the difference of the volume of the prism and the cylinder which is carved out of the prism. Formula used: Volume of Prism = (Area of base) × Height of prism Volume of Cylinder = πr2h Area of square = Side × side Calculation: ∵ Volume of remaining solid = Volume of prism – Volume of cylinder = (7 × 7 × 10) – [(22/7) × 2.1 × 2.1 × 10] = 490 – 138.6 = 351.4 cm3 |
|
| 512. |
The radius of a cylinder is 8 cm and its height is 10 cm. If cones of radius 3 cm each and 4 cm deep are carved out from both ends of the cylinder, find the new surface area of the remaining solid?1. 300π cm22. 302π cm23. 289π cm24. 298π cm2 |
|
Answer» Correct Answer - Option 1 : 300π cm2 Given: Radius of a cylinder(R) = 8 cm Height of cylinder = 10 cm Radius of cone(r) = 3 cm Height of cone = 4 cm Concept: The surface area of the remaining solid will be the sum of curved surface area of the cylinder, curved surface area of the cones, and the remaining area of the two circular faces of the cylinder. Formula used: Curved Surface area cylinder = 2πrh Curved Surface area Cone = πrl Slant height of cone = √(r2 + h2) Surface area of remaining circular face of cylinder = π(R2 – r2) Where ‘R’ is outer radius And ‘r’ is inner radius Calculation: Curved surface area of cylinder = 2πRh = 2 × π × 8 × 10 = 160π cm2 ------(1) Slant height of cone = √[(3)2 + (4)2] = √(25) = 5cm ∴ CSA of cone on both faces = 2πrl = 2 × 5 × 3 × π = 30π cm2 ------(2) Surface area of both faces of cylinder = 2π(R2 – r2) = 2π[(8)2 – (3)2] = 2π(64 – 9) = 2π × 55 = 110π cm2 ------(3) Adding (1), (2) and (3); Surface area of total solid = (Curved surface area of cylinder) + (CSA of cone on both faces) + Surface area of both circular faces of cylinder) = 160π cm2 + 30π cm2 + 110π cm2 = 300π cm2 |
|
| 513. |
A solid metallic ball of radius 9 cm is melted to form cylinders of radius 6 mm and height 1 cm. Find the number of such solid cylinders that can be formed.1. 22002. 30003. 25004. 2700 |
|
Answer» Correct Answer - Option 4 : 2700 Given: Radius of ball = 9 cm Radius of cylinder = 6 mm = 0.6 cm Height of cylinder = 1 cm Concept: The volume of the spherical ball will be equal to the total volume of all the cylinders that can be formed. Formula used: Volume of sphere = (4/3)πr3 Volume of cylinder = πr2h Calculation: Let, ‘n’ be the number of cylinders that can be formed; ∴ Volume of spherical ball = n × Volume of one cylinder. ⇒ (4/3)πr3 = n × πr2h ⇒ (4/3) × (22/7) × 9 × 9 × 9 = n × (22/7) × 0.6 × 0.6 × 1 ⇒ n = 2700 |
|
| 514. |
A bucket is in the shape of a frustum. The radii of its circular ends are 33 cm and 21 cm. If the height of the bucket is 42 cm, find the volume of water it can hold in cm3?1. 90021 cm32. 97812 cm33. 87821 cm34. 77021 cm3 |
|
Answer» Correct Answer - Option 2 : 97812 cm3 Given: Upper radius(R) = 33 cm Lower radius(r) = 21 cm Height of bucket = 42 cm Concept: Directly use the formula of volume of frustum and calculate the volume of the figure. Formula used: Volume of frustum = (1/3)πh(R2 + r2 + Rr) Calculation: Volume of frustum = (1/3)πh(R2 + r2 + Rr) ⇒ (1/3) × (22/7) × 42 × [(33)2 + (21)2 + (33 × 21)] ⇒ (1/3) × (22/7) × 42 × (1089 + 441 + 693) ⇒ 44 × 2223 ⇒ 97812 cm3 ∴ The volume of water it can hold is 97812 cm3. |
|
| 515. |
किसी त्रिभुज की भुजाओं का अनुपात `1/2:1/3:1/4` है और उसका परिधि 104 सेमी. हैं सबसे लम्बी भुजा की लम्बाई (सेमी. में) बताइए?A. 52B. 48C. 32D. 26 |
|
Answer» Correct Answer - B Ratio of sides `=1/2:1/3:1/4` `=6:4:3` `(6+4+3)to104` `13to104` `to8` `6to8xx6=48` |
|
| 516. |
किसी समबाहु त्रिभुज का क्षेत्रुफल `9sqrt(3)m^(2)` है। माध्यिका की लम्बाई ज्ञात करें?A. `2sqrt(3)`B. `3sqrt(3)`C. `3sqrt(2)`D. `2sqrt(2)` |
|
Answer» Correct Answer - B `(sqrt(3))/4("side")^(2)=9sqrt(3)` `("side")^(2)=9xx4=36` side `=sqrt(36)=6cm` length of median `=(sqrt(3))/2` (side) `=(sqrt(3))/2xx6=3sqrt(3)cm` |
|
| 517. |
5 सेमी. लंबाई , 4 सेमी., चौड़ाई और 3 सेमी. ऊंचाई के घनाभ का विकर्ण कितना होगा?A. `5sqrt(2)` cmB. `2sqrt(5)cm`C. `12 cm`D. `10 cm` |
|
Answer» Correct Answer - A Diagonal of cuboid `= sqrt(a^(2)+ b^(2)+c^(2))` `D=sqrt(5^(2)+4^(2)+3^(2))` `=sqrt(25+16+9)=sqrt(50)` `D=5sqrt(2)` |
|
| 518. |
किसी त्रिभुज की भुजाओं का अनुपात `5:6:7` तथा परिमाप 54 सेमी हैं त्रिभुज का क्षेत्रफल ज्ञात करें?A. `18 m^(2)`B. `54sqrt(6)m^(2)`C. `27sqrt(2)m^(2)`D. `25m^(2)` |
|
Answer» Correct Answer - B Ratio`=5:6:7` sumof sides `=` perimeter `=18` sides `5/18xx54=15` `6/18xx54=18` `7/18xx54=21` metres `S=(15+18+21)/2=27` `:.` Area of `Delta=sqrt(s(s-a)(s-b)(s-c))` `=sqrt(27xx12xx9xx6)=54sqrt(6)m^(2)` |
|
| 519. |
किसी समबाहु त्रिभुज का परिमाप 18 सेमी. है तब माध्यिका की लम्बाई ज्ञात करें?A. `3sqrt(2)` cmB. `2sqrt(3)`cmC. `3sqrt(3)` cmD. `2sqrt(2)`cm |
|
Answer» Correct Answer - C समबाहु त्रिभुज का परिमाप `=18cm` `3xx` side `=18cm` side `=18/3=6cm` माध्यिका की लंबाई `=(sqrt(3))/2` side `=(sqrt(3))/2xx6` `=3sqrt(3)cm` |
|
| 520. |
किसी 112 सेमी. व्यास वाले वृत्त को एक आयात के रूप में परिवर्तित किया गया, जिसकी भुजाओं में अनुपात `9:7` हैं। आयत की छोटी भुजा ज्ञात करें?A. 77 cmB. 97cmC. 67cmD. 84cm |
|
Answer» Correct Answer - A वृत्त की परिधि `=pixx` diameter `=22/7xx112=352m` `:.` आयत का परिमाप `=352` `2(l+b)=352` `l+b=352/2=176` `:.` छोटी भुजा `=7/16xx176` `=77cm` |
|
| 521. |
`(pi=22/7)` किसी वर्ग की भुजा किसी वृत्त का व्यास है तब वर्ग तथा वृत्त के क्षेत्रफल का अनुपात ज्ञात करें?A. `14:11`B. `7:11`C. `11:14`D. `11:7` |
|
Answer» Correct Answer - A माना वर्ग की भुजा `=a` माना वृत्त का व्यास `=d` According to question `a=d` `:. ("area of square")/("area of circle")=(a^(2))/(pi((d^(2))/4))` `=(a^(2)xx4)/(pid^(2))=(a^(2)xx4)/(pia^(2))` `=4/pi=(4xx7)/22=14/11` `implies 14:11` |
|
| 522. |
दो वृत्तों की त्रिज्याऐं 5 cm तथा 12 cm हैं। एक तीसरे वृत्त का क्षेत्रफल दोनों वृत्तों के क्षेत्रफल के योग के बराबर हैं तीसरे वृत्त की त्रिज्या ज्ञात करें?A. 13 cmB. 21 cmC. 30 cmD. 17 cm |
|
Answer» Correct Answer - A Area of two circles `=pi(5^(2)+12^(2))=169cm^(2)` `implies pir^(2)=169pi` `r^(2)=169` `r=13cm` `:.` Radius of third circle `=13cm` |
|
| 523. |
किसी आयत का परिमाप 40 मी0 तथा लम्बाई 12 मी. है। आयत की चौड़ाई ज्ञात करें?A. 10mB. 8mC. 6mD. 3m |
|
Answer» Correct Answer - B आयत का परिमाप `=40 m` Length `=12` metre `:. 2(l+b)=40` `2(12+b)=40` `12+b=40/2=20` `b=20-12=8m` |
|
| 524. |
एक आयत की लम्बाई और चौड़ाई में 23 मी0 का अंतर है यदि आयत का परिमाप 206 मी हो तो क्षेत्रफल क्या है।A. `1520 m^(2)`B. `2420 m^(2)`C. `2480 m^(2)`D. `2520 m^(2)` |
|
Answer» Correct Answer - D माना की चौड़ाई `=x` `:.` लम्बाई `=(23+x)m` `implies (2x+23+x)=206` `4x=206-46` `x=160/4=40m` `:.` length `=40+23=63m` `:.` अभीष्ट क्षेत्रफल `=63xx40` `=2520m^(2)` |
|
| 525. |
एक आयत की परिमाप 160 मी है। तथा उसकी दो भुजाओं का अंतर 48 मीटर है। वर्ग की भुजा ज्ञात कीजिए जिसका क्षेत्रफल इस आयत के क्षेत्रफल के बराबर है।A. 32mB. 8mC. 4mD. 16m |
|
Answer» Correct Answer - A According to the question `2(l+b)=160` `l+b=80`…………….i `l-b=48`………….ii On solving i and ii `1=64, b=16` `implies` area of square `=` area of rectangle `implies ("side")^(2)=64xx16` `implies` भुजा `=sqrt(64xx16)=32m` |
|
| 526. |
यदि वृत्त की परिधि `30/(pi)` है तो वृत्त का व्यास ज्ञात करें?A. `30`B. `15/(pi)`C. `60pi`D. `30/(pi^(2))` |
|
Answer» Correct Answer - D According to the question Circumference of a circle `=2pir` `2pir=30/(pi)` ltrgt `r=15/(pi^(2))` `D=2r=30/(pi^(2))` |
|
| 527. |
किसी वर्ग की भुजा को 25% बढ़ाया जाये क्षेत्रफल में प्रतिशत वृद्धि ज्ञात करें?A. `25%`B. `55%`C. `40.5%`D. `56.25%` |
|
Answer» Correct Answer - D क्षेत्रफल में वृद्धि `=25+25+(25xx25)/100` Use formula `(x+y+(xy)/100)` `=50+6.25=56.25%` |
|
| 528. |
एक वृत्त की परिधि और व्यास का अनुपात `22:7` हैं यदि परिधि 1 4/7`m हो तो वृत्त की त्रिज्या क्या होगी?A. `1/4` मी.B. `1/3` मी.C. `1/2` मी.D. `1` मी. |
|
Answer» Correct Answer - A According to the question `2pirto` circumference `24to` Diameter `implies (2pir)/(2r)=22/7` `implies(1 4/7)/(2r)=22/7` `implies 11/(7xx2r)=22/7` `implies 1/(2r)=2/1` `implies r=1/4m` |
|
| 529. |
यदि किसी वृत्त की त्रिज्या को 1 सेमी. बढ़ाया जाये तो उसका क्षेत्रफल 22 `cm^(2)` बढ़ जाता है । वृत्त की वास्तविक त्रिज्या ज्ञात करें?A. 6 cmB. 3.2 cmC. 3 cmD. 3.5 cm |
|
Answer» Correct Answer - C According to the question `pi(R+1)^(2)-piR^(2)=22` `pi{(R+1)^(2)-R^(2)}=22` `(R+1+R)(R+1-R)=(22xx7)/22=7` `=2R+1=7` `R=3cm` |
|
| 530. |
एक वृत्त का क्षेत्रफल `324 pi` वर्ग सेमी है। उसकी दीर्घतम जीवा की लंबाई सेमी में कितनी है?A. 36B. 37C. 28D. 32 |
|
Answer» Correct Answer - A Ara of circle `=324picm^(2)` `pir^(2)=324pi` `r=18cm` Longest chord `=` diameter `=2r` `=2xx18=36cm` |
|
| 531. |
किसी 5 सेमी. त्रिज्या वाले वृत्त का क्षेत्रफल उसकी परिधि का कितना प्रतिशत है?A. `200%`B. `255%`C. `240%`D. `250%` |
|
Answer» Correct Answer - D वृत्त का क्षेत्रफल `=pi(5)^(2)=25pi` वृत्त की परिधि `=2pi(5)=10pi` `%=(25pi)/(10pi)xx100=250%` |
|
| 532. |
एक त्रिभुज की अंतः त्रिज्या 6 सेमी है और उसकी भुजाआं की लंबाई का योग 50 सेमी है। त्रिभुज का क्षेत्रफल वर्ग सेमी में कितना है?A. 150B. 300C. 50D. 56 |
|
Answer» Correct Answer - A प्रश्नानुसार `r=(Delta)/S` Semiperimeter `=50/2=25` Inner radius `=("Area")/("Semi -perimeter")` Semiperimeter `6=("Area")/25` Area `=150 cm^(2)` |
|
| 533. |
यदि एक त्रिभुज की परिधि 24 सेमी. है और अंतः वृत्त की परिधि 44 सेमी है तो त्रिभुज का क्षेत्रफल क्या है ? (माने लें `pi=22/7`)A. 56 square cmB. 48 square cmC. 84 square cmD. 68 square cm |
|
Answer» Correct Answer - C Circumference of a `Delta` `=24cm` `a+b+c=24cm` or `S=(a+b+c)/2=12cm` Circumference of incircle `2pir` (inner) `=44cm` `r` (inner) `=7cm` Area of `Delta=Sxxr` (inner) `=12xx7=84cm^(2)` |
|
| 534. |
take `pi=22/7` किसी समबाहु त्रिभुज के परिवृत्त तथा अंतः वृत्त के क्षेत्रफल का अंतर 44 `cm^(2)` है। त्रिभुज का क्षेत्रफल ज्ञात करें?A. `28 cm^(2)`B. `7 sqrt(3)cm^(2)`C. `14 sqrt(3) cm^(2)`D. `21 cm^(2)` |
|
Answer» Correct Answer - C माना त्रिभुज की भुजा `a` सेमी है। `implies` परिधि`=a/(sqrt(3)` तथा अंतः त्रिज्या `a=(2sqrt(3))` `implies pi(a/(sqrt(3)))^(2)-pi(a/(2sqrt(3)))^(2)=44` `implies pi(a/(sqrt(3)))^(2)-pi(a/(2sqrt(3)))^(2)=44` `implies pi((a^(2))/3-(a^(2))/12)=44` `(4a^(2)-a^(2))/12=(44xx7)/22=14` `implies (3a^(2))/12=14` `implies a^(2)=56` `implies a=2sqrt(14)` `implies` क्षेत्रफल `=(sqrt(3))/4xx2sqrt(14)xx2sqrt(14)` `=14sqrt(3)cm^(2)` |
|
| 535. |
If the total surface area of a cube is 864 square cm, find the volume of the cube:1. 1728 cm32. 1624 cm33. 144 cm34. |
|
Answer» Correct Answer - Option 1 : 1728 cm3 Given: Total surface area of cube 864 cm2 Formula used: If one side of the cube be 'a' then, Total surface area of the cube = 6a2 Volume of cube = a3 Calculation: Accordingly, 6a2 = 864 a2= 144 a = 12 Volume of cube = a3 = 123 ⇒ 1728 cm3 ∴ The volume of the cube is 1728 cm3.
|
|
| 536. |
The ratio between the length and the breadth of a rectangle is 17 : 13. If breadth is 5 cm less than the length, what will be the perimeter of the rectangle? 1. 115 cm2. 95 cm3.125 cm4. 75 cm |
|
Answer» Correct Answer - Option 4 : 75 cm Given: Ratio between the length and the breadth of a rectangle = 17 : 13 Breadth is 5 cm less than the length Formula used: Perimeter = 2(Length + Breadth) Calculation: Let the length and breadth of rectangular lawn be 17a and 13a According to the question ⇒ 17a – 13a = 5 ⇒ 4a = 5 ⇒ a = 5/4 cm Length = 17 × 5/4 = 21.25 Breadth = 13 × 5/4 = 16.25 Perimeter = 2(21.25 + 16.25) = 75 cm ∴ The perimeter of the rectangle is 75 cm |
|
| 537. |
The breadth of a rectangle is equal to the radius of a circle, the ratio of areas of circle and rectangle is 33 ∶ 16. Then the length of rectangle is what percentage greater the breadth of the rectangle?1. 105.8%2. 152.4%3. 52.4%4. 50.8%5. 48.5% |
|
Answer» Correct Answer - Option 3 : 52.4% Radius of circle(r) = Breadth of rectangle(b) The ratio of areas of circle and rectangle is 33 ∶ 16 ⇒ (π × r2)/(l × b) = 33/16 l → length of rectangle ⇒ (π × b2)/lb = 33/16 ⇒ 22b/7l = 33/16 ⇒ l/b = 32/21 ∴ Let l = 32x and b = 21x ∴ Required percentage = {(32x – 21x)/21x} × 100 = 52.38% ≈ 52.4% ∴ The length of rectangle is 52.4% greater the breadth of the rectangle |
|
| 538. |
Find the area of rectangle if the difference of sides is 12 cm and the sides are in the ratio 11 ∶ 9?1. 3564 square cm2. 3552 square cm3. 3660 square cm4. 3260 square cm |
|
Answer» Correct Answer - Option 1 : 3564 square cm Given: The ratio of Sides is 11 ∶ 9 The difference of sides is 12 cm Formula used Area of rectangle = Length × Breadth Calculation: Let the ratio be x ∴ Length = 11x and Breadth = 9x And the difference of sides is 12 cm ⇒ 12 = 11x – 9x ⇒ 2x = 12 cm ⇒ x = 6 cm ∴ Length = 11x = 11 × 6 = 66 cm and Breadth = 9x = 9 × 6 = 54 cm Now, Area of rectangle = 11 × 9 × 6 × 6 ⇒ (100 – 1) × 36 ⇒ 3600 – 36 = 3564 square cm ∴ Area of rectangle is 3564 square cm |
|
| 539. |
3D bodies occupy a portion of the space. The extent of space occupied by a 3D body is its ______.1. Time-measure2. Volume-measure3. Distance-measure4. Weight-measure |
|
Answer» Correct Answer - Option 2 : Volume-measure Measurement: It is defined as the description of data in terms of numbers. More precisely, measurement is defined as the assignment of numerals to objects or events according to rules. 3-dimensional body: A body that has length, breadth, and height. For example, glass, ball, and cylinder are three-dimensional objects as it has length, breadth, and height.
Hence, we conclude that the extent of space occupied by a 3D body is its volume measure. |
|
| 540. |
What is the perimeter of rectangle if it’s one side is 24 cm and length of diagonal is 25 cm?1. 60 cm2. 62 cm3. 70 cm4. 72 cm |
|
Answer» Correct Answer - Option 2 : 62 cm Given: Length of diagonal of rectangle is 25 cm And one of its sides is 24 cm Formula used/Concept Used: Length of diagonal of rectangle = √(length2 + Breadth2) Perimeter of rectangle = 2 × (Length + Breadth) Calculation: Let the other side of rectangle is x ∴ 25 = √242 + x2 Squaring both sides ⇒ x2 = 49 ⇒ x = 7 cm Now, Perimeter of rectangle = 2 × (24 + 7) = 2 × 31 = 62 cm ∴ Perimeter of rectangle is 62 cm |
|
| 541. |
The length of a rectangle is (7/10) of its width. If the area of rectangle is 1750cm2, then find the perimeter.1. 150 cm2. 160 cm3. 170 cm4. 140 cm |
|
Answer» Correct Answer - Option 3 : 170 cm Given Length = (7/10) × breadth Concept Area of rectangle = length × breadth Perimeter of rectangle = 2(length + breadth) Calculation Let the breadth of a rectangle is x cm So, length = (7/10)x Area of rectangle = 1750cm2 (7/10)x × x = 1750 ⇒ x2 = (1750) × (10)/7 ⇒ x2 = 2500 ⇒ x = 50 cm Perimeter of rectangle = 2[(7/10) × 50 + 50] ⇒ 2(85) ⇒ 170 cm ∴ The perimeter of rectangle is 170 cm |
|
| 542. |
The perimeter of a square is 20 cm. A rectangle has the same width as the square. The length of the rectangle is double its width. The area, in square cm, of the rectangle1. 302. 503. 1004. 25 |
|
Answer» Correct Answer - Option 2 : 50 Given: Perimeter of square = 20 cm Width of rectangle = Side of square Length of rectangle = 2 × Width of rectangle Formula used: Perimeter of square = 4 × Side of square Area of rectangle = Length × Width Calculations: Side of square = x Perimeter of square = 4x ⇒ 4x = 20 ⇒ x = 5 cm Length of rectangle = 2 × Width of rectangle Length of rectangle = 2 × 5 ⇒ 10 cm Area of rectangle = 5 × 10 ⇒ 50 cm2 ∴ The area of the rectangle is 50 cm2 |
|
| 543. |
The side of square is 39 cm. If the side of square is doubled to form length of rectangle, what would be the width of rectangle to keep the area of rectangle equal to the area of square?1. 13 cm2. 20 cm3. 19.5 cm4. 26 cm |
|
Answer» Correct Answer - Option 3 : 19.5 cm Given: Side of square = 39 cm Length of rectangle = 2 × side of square Concepts used: Area of square = (Side)2 Area of rectangle = Length × Width Calculation: Area of square = (Side)2 ⇒ (39)2 = 1521 cm2. Length of rectangle = 2 × side of square ⇒ 2 × 39 cm ⇒ 78 cm. Area of rectangle = Length × Width As area of rectangle is to be kept equal to area of square, ⇒ 1521 = 78 × width ⇒ Width = 1521/78 ⇒ Width = 19.5 cm. ∴ The width of the rectangle is equal to 19.5 cm. |
|
| 544. |
If side of a square is doubled. Then the ratio of areas of square will be:1. 4 ∶ 12. 1 ∶ 43. 2 ∶ 14. No change |
|
Answer» Correct Answer - Option 2 : 1 ∶ 4 Formula Used: Area of square = Side × Side Calculation: Case:1 Let assume that side of a square = x unit Area of square = Side × Side ⇒ Area of square = x × x = x2 square units Case: 2 ⇒ Side of square is doubled , so side = 2x units Area of square = Side × Side ⇒ Area of square = 2x × 2x = 4x2 square units Ratio ⇒ Area of square 1/ Area of square 2 = x2/4x2 ∴ Area of square 1 ∶ Area of square 2 = 1 ∶ 4 The correct option is 2 i.e. 1 ∶ 4 . |
|
| 545. |
What will be the volume of a 10 m high prism whose base is a regular polygon with each side 2 m and internal angle of 120°? Given(√3 = 1.7)1. 102 cm32. 204 m33. 51 m34. 102 m3 |
|
Answer» Correct Answer - Option 4 : 102 m3 Given- Height of prism = 10 m Each Side of polygon = 2 m Each interior angle = 120° Concept Used- Volume of Prism = Area of Base × Height Area of Hexagon = 3√3/2 × Side2 Each External Angle of a polygon = 360/n [where n = number of sides of the polygon] Calculation- Exterior Angle = 180° - 120° ⇒ 60° n = 360/60 ⇒ 6 Hence the polygon is a regular hexagon. Area of Hexagon = 3√3/2 × 22 ⇒ 6√3 m2 ∴ Volume of Prism = 6√3 × 10 ∵ √3 = 1.7(given) ⇒ 102 m3 |
|
| 546. |
If a right circular cone of height 24 cm has a volume of 1232 cm3 and the radius of cone is equal to the radius of hemisphere then find the total surface area of hemisphere.1. 462 cm22. 605 cm23. 616 cm24. 512 cm2 |
|
Answer» Correct Answer - Option 1 : 462 cm2 Given :- Height of cone = 24 cm Volume of cone = 1232 cm2 Radius of cone = Radius of hemisphere Concept :- Volume of cone = (1/3)πr2h Total surface area of hemisphere = 3πr2 Calculation :- ⇒ 1232 = (1/3) × (22/7) × r2 × 24 ⇒ r2 = (1232 × 3 × 7)/(22 × 24) ⇒ r2 = 49 ⇒ r = 7 Total surface area of hemisphere = 3πr2 ⇒ Total surface area of hemisphere = 3 × (22/7) × (7)2 ⇒ Total surface area of hemisphere = 462 cm2 ∴ Total surface area of hemisphere is 462 cm2 |
|
| 547. |
A metallic solid cuboid of sides 44 cm, 32 cm and 36 cm melted and converted into some number of spheres of radius 12 cm. How many such sphere can be made with the metal (π = 22/7)?1. 52. 63. 74. 8 |
|
Answer» Correct Answer - Option 3 : 7 Given: The sides of the cuboid are 44 cm, 32 cm, and 36 cm The radius of the sphere is 12 cm Concept Used: The volume of a cuboid of sides l, b and h = l × b × h The volume of the sphere of radius r = (4/3)πr3 Calculation: The volume of the metallic cuboid is (44 × 32 × 36) cm3 The volume of the sphere is (4/3) × π × 123 Let, the total number of such sphere is n Accordingly, 44 × 32 × 36 = n × (4/3) × π × 123 ⇒ 44 × 32 × 36 = n × (4/3) × (22/7) × 12 × 12 × 12 ⇒ n = 44 × 32 × 36 × (3/4) × (7/22) × (1/12) × (1/12) × (1/12) ⇒ n = 7 ∴ Such 7 spheres can be made by given metallic cuboid. |
|
| 548. |
If each side of a square is increased by 25%, then find the percentage change in its area.1. 33.33%2. 50%3. 40%4. 56.25% |
|
Answer» Correct Answer - Option 4 : 56.25% GIVEN: each side of a square is increased by 25% FORMULA USED: Area of square = (Side)2 sq. unit CALCULATION: Let the side of the square be a unit ⇒ Area = a2 sq. unit side of a square is increased by 25% ⇒ New side = 125a/100 ⇒ 5a/4 ⇒ New area = (5a/4)2 ⇒ 25a2/16 ⇒ Increased in area = (25a2/16 - a2) ⇒ 9a2/16 ⇒ % increase in area = (9a2/16 × 1/a2 × 100) ⇒ 56.25% ∴ % increase in area = 56.25% |
|
| 549. |
Find the volume of a cone whose radius of the base is 9 cm and height is 14 cm.1. 1848 cm32. 1188 cm33. 1108 cm34. 1484 cm3 |
|
Answer» Correct Answer - Option 2 : 1188 cm3 Given : Radius of base = 9 cm Height of cone = 14 cm Formula used : Volume of cone = (1/3) × (22/7) × r2 × h Calculation : Volume of cone = (1/3) × (22/7) × 92 × 14 ⇒ Volume of cone = 22 × 3 × 9 × 2 ∴ Volume of cone is 1188 cm3 |
|
| 550. |
A rectangular grassy plot 110 m by 65 m has a gravel path 2.5 m wide all round it on the inside. Find the cost of gravelling the path at 80 paise per sq. meter. 1. Rs. 4502. Rs. 6803. Rs. 5004. Rs. 580 |
|
Answer» Correct Answer - Option 2 : Rs. 680 GIVEN: Length and Breadth of the grassy plot are 110 m and 65 m and the width of the path be 2.5 m FORMULA USED: Area of the rectangular plot = (l × b) sq. unit CALCULATION: Area of the rectangular plot = (l × b) sq. unit ⇒ (110 × 65) ⇒ 7150 m2 Area of the plot excluding the path = (110 - 5) × (65 - 5) ⇒ 105 × 60 ⇒ 6300 m2 Area of the path = (Area of the rectangular plot - Area of the plot excluding the path) ⇒ 7150 - 6300 ⇒ 850 m2 Cost of graveling the path = (850 × 80/100) ∴ Cost of graveling the path Rs680 |
|