Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

The cost of painting of cylindrical drum which is opened at the top of radius 14 m at the rate of Rs 5 per m2 is Rs 8360. Find the height of the cylindrical drum.1. 12 m2. 15 m3. 18 m4. 10 m5.  16 m

Answer» Correct Answer - Option 1 : 12 m

Given:

The cost of painting of cylindrical drum at the rate of Rs 5 per m2 is Rs 8360.

The radius of cylindrical drum which is opened at the top is 14 m.

Formula Used:

Curved surface area of cylinder = 2πrh

where r = radius and h = height

Calculation:

The cost of painting of cylindrical drum at the rate of Rs 5 per m2 is Rs 8360.

Then, area of the cylindrical drum which is opened at the top = 8360/5 =1672 m2

Total surface area of the cylindrical drum which is opened at the top = 2πrh + πr2

⇒ 2πrh + πr2  = 1372

⇒ 2 × 22/7 × 14 × h + 22/7 × 14 × 14 = 1672

⇒ 88h = 1672

⇒ h = 12

Therefore, the height of the cylindrical drum is 12 m.   

102.

The external and internal diameter of a hollow cylinder are 42 and 28 cm respectively. Find the cost of painting the cylinder completely at the cost of Rs 0.5/cm2 if the height of cylinder is 5 cm1. Rs 26402. Rs 5503. Rs 19254. Rs 1320

Answer» Correct Answer - Option 4 : Rs 1320

Given-  

External diameter = 42 cm

Internal diameter = 28 cm

Cost of painting = Rs 0.5/cm2

Height of cylinder = 5 cm

Concept Used-

Total Surface Area of a hollow cylinder = 2πh(R + r) + 2π(R2 - r2)      [where R = External Radius, r = Internal Radius]

Calculation- 

External Radius(R) = 42/2

⇒ 21 cm

Internal Radius(r) = 28/2

⇒ 14

Total Surface area = 2π × 5 × (21 + 14) + 2π(212 - 142)

⇒ 44/7 × 5 × 35 + 44/7 × (245)

⇒ 1100 + 1540

⇒ 2640 cm2

∴ Total cost of painting the cylinder = 2640 × 0.5

⇒ Rs 1320

103.

A spherical ball of lead 6 cm in radius is melted and recast into three spherical balls. The radii of two of ball are 3 cm and 4 cm. What is the radius of third sphere?1. 5 cm2. 5.5 cm3. 6 cm4. 6.6 cm

Answer» Correct Answer - Option 1 : 5 cm

Given :-

Spherical ball of radius 6 cm

Recast into three spherical ball having radius = 3 cm and 4 cm 

Concept :-

Volume of sphere = (4/3)πR3

Volume of spherical ball = Summation of volume of small spherical balls

Calculation :- 

Let radius of small spheres are r1 , r2 and r3

r1 = 3 cm and r2 = 4 cm

Volume of sphere ball = Volume of first sphere + Volume of second sphere + Volume of third sphere

⇒ (4/3) × π × 63 = (4/3) × π × 33 + (4/3) × π × 43 + (4/3) × π × (r)3

⇒ (4/3) × π × 216 = (4/3) × π [27 + 64 + r3]

⇒ 216 = 91 + r3

⇒ 216 - 91 = r3

⇒ r3 = 125 

⇒ r = ∛125

⇒ r = 5 

∴ Radius of third small sphere is 5 cm

104.

Find the perimeter of the sector of angle 60° of a circle of radius 21 m. 1. 22 m2. 11 m3. 64 m4. 43/3 m

Answer» Correct Answer - Option 3 : 64 m

Given:

Radius of circle, r = 21 m

Sector angle = 60°

Formula used:

Perimeter of sector = θ/360° × 2πr + 2r

Calculation:

Perimeter of sector = θ/360° × 2πr + 2r

⇒ Perimeter of sector = (60°/360°) × 2 × 21 × 22/7 + 2(21)

⇒Perimeter of sector = (60 × 2 × 21 × 22)/(360 × 7) + 42

⇒ Perimeter of sector = 22 + 42 = 64 m

∴ Perimeter of sector is 64 m.

105.

If the radius of a sphere is 16 cm and is melted and recast into a sphere of radius 4 cm. Then find the number of small spheres that are cast. 1. 162. 323. 484. 64

Answer» Correct Answer - Option 4 : 64

Given:

Radius of an original sphere = 16 cm

Radius of a recast sphere = 4 cm

Formula Used:

Volume of a sphere = (4/3)πr3 

Number of recast spheres =  Volume of the original sphere/Volume of the recast sphere

Calculation:

Volume of a original sphere = 4/3 π (16)3

Volume of the recast sphere = 4/3 π (4)3

Hence, number of recast spheres = Volume of the original sphere/Volume of the recast sphere

⇒ [(4/3) π (16)3]/[(4/3) π (4)3] = 64

∴ The number of recast spheres is 64.

106.

A solid sphere of radius 6 meter is melted and recast into some small sphere of radius as 3, 2 and 1 meter. If the numbers of spheres of different radius are the same then find how many small spheres were made?1. 122. 43. 54. 65. 10

Answer» Correct Answer - Option 4 : 6

GIVEN:

Radius of big sphere = 6 m

Radius of small sphere’s = 1 m, 2 m & 3 m

CONCEPT:

“Since the given sphere is a solid sphere which means that it is also filled inside. so we can say that the volume of the bigger sphere will be equal to the volume of the small sphere.”

CALCULATION:

So we can write it as,

⇒ 4/3πR3 = N [4/3πr13+ 4/3πr23+ 4/3πr33]      [N = number of spheres]

⇒ 4/3 πR3 = N 4/3π [r13 + r23 + r33]

⇒ Here R = 6m, r1 = 1m,  r2 = 2m  , r3 = 3m

⇒ R3 = N [r13 + r23 + r33]

⇒ 216 = N [1 + 8 + 27]

⇒ N = 216/36 = 6

107.

A hollow cylinder of height 21 cm and volume 7276.5 cm3 circumscribes a cone having the same base as the cylinder. The CSA of the cone is half of the CSA of the cylinder. Find the height of the cone.1. 162. 173. 184. 19

Answer» Correct Answer - Option 3 : 18
GIVEN:
Height of hollow cylinder = 21cm
Volume of hollow cylinder = 7276.5 cm3 
CSA of the cone = 1/2 × CSA of the cylinder
 
FORMULAS USED:
Volume of cylinder = \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa!37B0! π \)π r2h
CSA of cylinder = 2π rh
CSAof cone = π rl
 
EXPLANATION:
Volume of cylinder \(\pi\)r2h = 7276.5
\(\frac{22}{7}\times r^2\times21 = 7276.5\)
\(r^2 = \frac{7276.5}{66} = 110.25\)
r = 10.5
Since the base of cone and cylinder is same the radius of the cone is also 10.5
now, CSA of cone = \(\frac12\)CSA of cylinder
\(\therefore π rl = \frac122π rh\) \(\rightarrow\) l = h
l = 21
now, height of cone h2 = l- r2
h2 = 212 - 10.5
h = 18
108.

A 42 cm long hollow cylinder has an outer diameter of 16 cm and an internal diameter of 12 cm. If the weight of the cylinder's material is 10 g/cm3, what is the weight of the hollow or empty cylinder? (π = 22/7)1. 32.960 kg2. 36960 kg3. 36.960 kg4. 32960 kg

Answer» Correct Answer - Option 3 : 36.960 kg

Given:

⇒ Outer diameter of cylinder = 16cm

⇒ Outer radius of cylinder = 8cm

⇒ Inner diameter of cylinder = 12cm

⇒ Inner radius of cylinder = 6cm

⇒ Height of cylinder = 42cm

Formula:

⇒ Volume of hollow cylinder = πh[(outer radius)2 - (inner radius)2]

Calculation:

⇒ Volume of hollow cylinder = 22/7 × 42 × (82 - 62) = 3696 cm3

⇒ Weight of hollow cylinder = 3696 × 10 = 36960 g

∴ Weight of cylinder = 36960 /1000 = 36.960 kg

109.

A hollow cylinder with outer radius 4 cm and height 2 cm is made up of 1 cm thick metal sheet. What is the volume of metal used? (Take π = \(\frac{22}{7}\))1. 40 cm32. 56 cm33. 44 cm34. 65 cm3

Answer» Correct Answer - Option 3 : 44 cm3

Given:

Outer Radius of hollow cylinder is 4 cm.

Height is 2 cm.

Thick is 1 cm.

Formula used:

Volume of hollow cylinder = Outer Volume – Inner Volume 

= πR2h – πr2

Calculation:

Outer Radius(R) = 4 cm

Inner Radius(r) = (4 – 1) cm = 3 cm.

According to the question:

πR2h – πr2

⇒ πh(R2 – r2)

⇒ (22/7) × (42 – 32) × 2

⇒ (22/7) × 7 × 2

⇒ 44 cm3

 ∴ The volume of metal used is 44 cm3.

110.

A circle of radius 7 cm is drawn inside an equilateral triangle. Find the area of triangle 1. 141√2 cm22. 150√5 cm23. 155√2 cm24. 147√3 cm2

Answer» Correct Answer - Option 4 : 147√3 cm2

Given:

Radius of circle = 7 cm

Formula:

Area of circle = πr2

Area of triangle = √3 / 4 × a2

In radius of circle = a / 2√3

Calculation:

In radius of circle = a / 2√3

⇒ 7 = a / 2√3

⇒ a = 14√3

Area of triangle = √3 / 4 × (14√3)2

⇒ √3 / 4 × 14 × 14 × 3

⇒ 147√3 cm 

111.

Each side of a cube is increased by x cm, such that its total surface area is increased by 69%, then find the percentage change in its volume?1. 72.8%2. 119.7%3. 123.3%4. 87.5%

Answer» Correct Answer - Option 2 : 119.7%

Given:

When each side of a cube increased by 'x' cm then the total surface area is increased by 69%.

Concept:

Total surface area of the cube = 6 × a2

Volume of the cube = a3

Where a = side

Calculation:

TSA1/TSA2 = (6 × a2)/[6 × (a + x)2

According to the question,

a2/(a + x)2 = 100/169

⇒ a/(a + x) = 10/13

⇒ 13a = 10a + 10x

⇒ 3a = 10x

⇒ a/x = 10/3

V1/V2 = a3/(a + x)3

⇒ 103/133 = 1000/2197

% increase = (1197/1000) × 100 = 119.7%

∴ % increase of the volume is 119.7%.

Shortcut:

Given:

When each side of a cube increased 'x' cm, the total surface area is increased by 69%.

Concept:

The total surface area of the cube = 6 × a2

The volume of the cube = a3

Where a = side

Explanation:

TSA → 100 : 169

Side → 10 : 13

Volume → 1000 : 2197

% increase = (1197/1000) × 100 = 119.7%

112.

132 सेमी लम्बे एक तार के टुकड़े को एक समबाहु त्रिभुज एक वर्ग और एक वृत्त के आकार में मोड़ा जाता है। बताइए कौन से आकार में क्षेत्रफल सबसे अधिक होगा?A. वृत्‍तB. समबाहु ‌त्रिभुजC. वर्गD. सभी आकार में एक समान

Answer» Correct Answer - A
In triangle perimeter
`=3a=132, a=44`
So area `=(sqrt(3))/4 a^(2)=(sqrt(3))/4 44xx44`
`=484sqrt(3)`…………..i ltbgt square perimeter `4a=132` ltbgt `a=33`
So area `=a^(2)=(33)^(2)=1089`
Circle perimeter `=2pir=132`
`2xx 22/7r=132`
So `r=21`
Now
area `=pir^(2)=22/7xx21xx21`
`=1386`
So area of circle will be longest shape
113.

किसी शंकु के आधार का क्षेत्रफल `770 cm^(2)` उसके तिर्यक पृष्ठ का क्षेत्रफल `814 cm^(2)` है। आयतन ज्ञात करें?A. `213 sqrt(3)cm^(3)`B. `392sqrt(5)cm^(3)`C. `550sqrt(5)cm^(3)`D. `616sqrt(5)cm^(3)`

Answer» Correct Answer - D
`pir^(2)=770`
`impliesr^(2)=(770xx7)/22`
`implies r=7sqrt(5)cm` ltrbgt and `pirl=814`
`l=(814xx7)/(22xx7sqrt(5))=37/(sqrt(5))`
`l^(2)=h^(2)+r^(2)`
`=(37xx37)/4=h^(2)+245`
`impliesh^(2)=1369/5-245=144/5`
`implies h=12/(sqrt(5))`
volume `=1/3pir^(2)h`
`=1/3xx22/7xx7sqrt(5)xx7sqrt(5)xx12/(sqrt(5))`
`616sqrt(5)cm^(3)`
114.

The diagonal of a square is 4√2 cm. The diagonal of another square whose area is double that of the first square is:1. 8√22. √323. 8 cm4. 16 cm

Answer» Correct Answer - Option 3 : 8 cm

Given:

The length of the diagonal of the square is 4√2 cm

Concept Used:

If the length of one side of a square is 'a' unit then the length of diagonal of the square is a√2 unit.

And the arear of the square is a2 square unit.

Calculation:

Let, the length of one side of the square is 'a' unit

⇒ Length of the diagonal of the square is a√2 unit

Accordingly,

a√2 = 4√2

⇒ a = 4

Area of the square is 42 = 16 cm2

Accordingly, the area of the 2nd square is 2 × 16 = 32 cm2

Let, the length of the side of the 2nd square is 'b'

Accordingly, 

b2 = 32

⇒ b = √32

⇒ b = 4√2

Length of the diagonal of the 2nd square is (4√2) × √2

⇒ 8 cm

∴ The diagonal of another square whose area is double that of the first square is 8 cm.

115.

If V be the volume of a right circular cone, A be the area of the base and H be its height, then the value of \(\frac{{AH}}{V}\) is1. 22. 33. 44. None of the above

Answer» Correct Answer - Option 2 : 3

Formula used:

Volume of cone = 1/3 πr2h

Area of circular base = πr2

Calculation:

Height = H

V = 1/3 πr2H

A = πr2

\({AH\over V} =\ { \pi r^2 \times H \over 1/3 \pi r^2 H} \)

⇒ AH/V = 3

∴ The value of \(\frac{{AH}}{V}\) is 3.

116.

In an equilateral triangle, incentre, circumcentre and orthocentre are1. Collinear 2. concylic3. concurrent4. None of these

Answer» Correct Answer - Option 1 : Collinear 

Calculation 

Incenter = Point of intersection of angle bisector 

Circumcenter = Point of intersection of perpendicular bisector 

Orthocenter = Point of intersection of altitude

and they meet at same line in equilateral triangle so, all the points are collinear in equilateral triangle 

∴ The required answer is collinear 

117.

A square field of side 60 m and a rectangular field of length 80 m have the same perimeter. Then which of the following is true?1. Area of the square field = Area of the rectangular field2. Area of the rectangular field > Area of the square field 3. Area of the square field > Area of the rectangular field 4. The difference between their areas is 1200 m2

Answer» Correct Answer - Option 3 : Area of the square field > Area of the rectangular field 

Given:

A square field of side 60 m and a rectangular field of length 80 m have the same perimeter.

Formula Used:

Area of the square field = (side)2

Area of the rectangular field = Length of field × Breadth of field

Perimeter of square field = 4 × side

Perimeter of rectangular field = 2 × (Length + Breadth)

Calculation:

⇒ Area of the square field = (60)2 = 3600 m2

⇒ Perimeter of square field = 4 × 60 = 240 m 

⇒ Perimeter of rectangular field = 2 × (80 + Breadth) = 240

⇒ Breadth of rectangular field = 40 m

⇒ Area of the rectangular field = 80 × 40 = 3200 m2

∴ Area of the square field > Area of the rectangular field 

118.

The ratio of height and diameter of a right circular cone is 3:2 and its volume is 1078 cm3. Then find the height of the right circular cone.1. 20 cm2. 31 cm3.21 cm4. 27 cm

Answer» Correct Answer - Option 3 :

21 cm


Given:

The ratio of height and diameter of the right circular cone = 3 : 2

The volume of cone =  1078 cm3

Formula used:

The volume of right circular cylinder = 1/3 × π × radius2 × height

Calculation:

Let the radius be ‘r’ and the height be ‘h’.

r = diameter/2 = 2x/2 = x

h = 3x

The volume of right circular cylinder = 1/3 × π × r2 × h

⇒ 1/3 × π × r2 × h = 1078

⇒ 1/3 × π × x2 × 3x = 1078

⇒ x3 = 49 × 7

⇒ x3 = 73

⇒ x = 7

 ⇒ height of cone = 3x = 3 × 7 = 21 cm.

∴ the height of the right circular cone is 21 cm.

119.

A water tank is 3 m long, 2 m broad and 1 m deep. How many litres of water can it hold? 1. 60 liters 2. 60000 liters 3. 6000 liters4. 600 liters

Answer» Correct Answer - Option 3 : 6000 liters

Given:

Length, breadth and height of tank is 3m, 2m and 1m respectively

Formula Used:

Volume = Length × breadth × height

Calculation:

Volume of tank = (length × breath × height)

Volume of tank = (3 × 2 × 1) = 6 m3

Now,

1m3 = 1000 litres

∴ 6m= 6000 litres

∴ It can hold 6000 litres of water
120.

PQR is an equilateral triangle of side 11 cm. Find the radius of incircle.1. 6.5/√3 cm2. 7.5/√3 cm3. 11/√3 cm4. 5.5/√3 cm

Answer» Correct Answer - Option 4 : 5.5/√3 cm

Given

Side of an equilateral triangle = 11 cm

Concept

Radius of incircle of equilateral triangle = Side/2√3

Calculation

Radius of circle = 11/2√3 cm

Radius of circle = 5.5/√3 cm

121.

Find the area of square plot, If the cost of fencing the square plot at the rate of 2.3 rupee per meter is 156.4 rupee. 1. 196 cm22. 256 cm23. 289 cm24. 225 cm2

Answer» Correct Answer - Option 3 : 289 cm2

Given: 

The cost of fencing of the square plot is 156.4 rupees at the rate of 2.3 rupees per meter.  

Concept: 

Perimeter of square = 4 × side 

Area of square = (Side)2

Calculation: 

Here, the perimeter of the square plot is 

⇒ 156.4/2.3

⇒ 68 m

Now, The side of the square plot is

⇒ 68/4

⇒ 17 cm

The area of the square plot is 

⇒ (17)2

⇒ 289 cm2

∴ The required area of the square plot is 289 cm2.

122.

A pizza of diameter 24 cm is cut into 8 pieces of equal area. Find the area of each piece.1. 18π cm22. 16π cm23. 20π cm24. 15π cm2

Answer» Correct Answer - Option 1 : 18π cm2

Given:

Diameter of Pizza = 24 cm

Radius of pizza = 12 cm

Concept:

When the pizza is divided into 8 parts, the central angle of 360° will also be divided into 8 equal parts forming 8 sectors of equal area.

Formula used:

Area of sector = (θ/360°) × πr2

Calculation:

Central angle of each part = 360°/8 = 45°

Area of each piece = (45°/360°) × π × 12 × 12

⇒ (1/8) × π × 144

⇒ 18π cm2

Area of each piece is 18π cm2

123.

From a rectangle ABCD of area 812 cm2, a semicircular part with diameter CD and area 98π cm2  are removed, find the perimeter of the remaining figure.1. 125 cm2. 135 cm3. 130 cm4. 164 cm

Answer» Correct Answer - Option 3 : 130 cm

Given - 

area of rectangle = 812 cm2, area of semicircle = 98π cm2

Formula used - 

area of rectangle = length × breadth

area of semicircle = (1/2) × π × radius2

Solution - 

Let the radius of the semi - circle is r cm.

⇒ (1/2) × π r2 = 98π  

⇒ r2 = 196

⇒ r = 14 cm

⇒ diameter of the semi - circle = 28 cm

⇒ diameter of semi - circle = side of rectangle CD = 28 cm

⇒ area of rectangle = 812 cm2

⇒ BC × CD = 812

⇒ BC × 28 = 812

⇒ BC = 29 cm

⇒ We have to find perimeter of remaining figure so,

⇒ perimeter = AB + BC + AD + (1/2) × perimeter of the circle

⇒ perimeter = 28 + 29 + 29 + (1/2) × (2πr)

⇒ perimeter = 58 + 28 + (22/7) × 14

⇒ perimeter = 130 cm

∴ perimeter of remaining figure = 130 cm.

124.

The length of a side of an equilateral triangle is 21 cm. what would be the approximate area of the circumcircle of the equilateral triangle.[Use \(\pi = \frac{22}{7}\)]1. 154 \(\sqrt{3}\) cm22. 462 \(\sqrt{3}\) cm23. 462 cm24. 484 cm2

Answer» Correct Answer - Option 3 : 462 cm2

Given:

Side of equilateral triangle = 21 cm

Formula used:

Radius of circumcircle of an equilateral triangle = side/√3

Area of circle = πrwhere, r = Radius

Calculation:

The radius of circumcircle = 21/√3

⇒ 7 × √3 

⇒ 7√3 cm

Area of the circumcircle = 22/7 × 7√3 × 7√3

⇒ 22 × 7 × 3 cm2

⇒ 22 × 21 cm2

⇒ 462 cm2

∴ The approximate area of the circumcircle of the equilateral triangle is 462 cm2
125.

If the side of a cube is 2√3 cm, then find the total surface area of the cube.1. 96 cm22. 72 cm23. 48 cm24. 60 cm2

Answer» Correct Answer - Option 2 : 72 cm2

GIVEN:

Side of the cube = 2√3 cm

FORMULA USED:

Total surface area of the cube = 6 × side2

CALCULATION:

Side of the cube = 2√3 cm

Total surface area of the cube = 6 × (2√3)2

⇒ 6 × 12

⇒ 72 cm2

∴ The total surface area of the cube is 72 cm2.

126.

Two concentric circles form a ring. The inner and outer circumferences of the ring are 22 cm and 44 cm respectively The width of the ring is: (take \(\pi =\frac{22}{7}\))1. 3.5 cm2. 1.5 cm3. 3 cm4. 2.5 cm

Answer» Correct Answer - Option 1 : 3.5 cm

Given:

As the circumference of the inner circle = 22 cm

And of the outer circle = 44 cm

Formula Used:

Circumference of a circle = 2× π× R

Where R = Radius of the given circle, where π = 22/7

Calculation:

Let Us assume that the radius of the bigger circle be X unit

And the radius of the smaller circle be Y unit

By using the above formula

⇒ Circumference of the inner circle is 2× π×Y = 22 (∵ It is given in the question )

⇒ Circumference of the outer circle is 2× π×X = 44 (∵ It is given in the question )

⇒ 2× (22/7)× Y = 22 and 2× (22/7)× X = 44

⇒ Y = 3.5 cm and X = 7cm

∴ The width of the ring is X – Y = 7 – 3.5 = 3.5 cm

127.

Find the circumference of a circle whose diameter is 12 inches.1. 88.1876 cm2. 87.4672 cm3. 90.2348 cm4. 95.7072 cm

Answer» Correct Answer - Option 4 : 95.7072 cm

Given:

Diameter of the circle = 12 inches

Concept used:

1 inch = 2.54 cm

Formula used:

Circumference of circle = 2 π r

r = d/2

Calculation : 

r = 12/2

⇒ r = 6 inches  = 15.24cm

⇒ Circumference of circle = 2π × 15.24

⇒ 95.7072cm

128.

There is a cube with side eight inches. It is then cut into small cubes in which the side of each cube is two inches. Find the ratio of the sum of the surface area of all the smaller cubes with respect to the surface area of the larger cube.1. 1 ∶ 42. 4 ∶ 13. 1 ∶ 64. 6 ∶ 1

Answer» Correct Answer - Option 2 : 4 ∶ 1

Given:

Big cube side is  8 inches and small cube side is 2 inches

Formula Used: 

Volume of cube\({\left( {side} \right)^3}\)

Total surface area of cube\(6{\rm{ × }}{(side)^2}\)

Calculation:

Volume of big cube = 8× 8 × 8

 ⇒ 512

Volume of small cube = 2 × 2 × 2 

⇒ 8

Number of small cube =(volume of big cube)/ (volume of small cube)

⇒ No. of cube = 512/8

⇒ No. of cube = 64

According to question,

Total surface area of big cube = \(6 × {(8)^2}\)

⇒ 6 × 64

Total surface area of small cube = 6 × \({(2)^2}\) × 64

⇒ 6 × 4 × 64

The ratio of total surface area of sum of small cubes and big cube

⇒ 6 × 4 × 64 ∶ 6 × 64

Required ratio = 4 ∶ 1

∴ Ratio of cube is 4 : 1

129.

If the total surface area of a cuboid of length 6 cm and breadth 5 cm is 126 sq cm, then its height is:1. 5 cm2. 3.5 cm3. 4 cm4. 3 cm

Answer» Correct Answer - Option 4 : 3 cm

Given:

Total surface area of a cuboid =126 sq. cm

Length and breadth of the cuboid is 6 cm and 5 cm respectively

Concept used:

Total surface area of a cuboid =2(lb + bh + hl)

⇒ 2(30 + 5h + 6h) =126

⇒ 60 + 10h + 12h =126

⇒ 22h =66

⇒ h =3 cm

∴ The height of the cuboid is 3 cm 

 

130.

Each side of a square field measures 10 m. Find the perimeter of the field?1. 40 m2. 80 m3. 20 m4. 100 m

Answer» Correct Answer - Option 1 : 40 m

Given

Each side of a square field measures 10 m

Formula used

Perimeter of square = 4 × side of square

Calculation 

Perimeter of square = 4 × 10

⇒ 40 m

 

131.

The perimeter of two square are 12 cm and 16 cm. Find the perimeter of the third square whose area is equal to the sum of the area of the two squares.1. 24 cm2. 20 cm3. 28 cm4. 16 cm

Answer» Correct Answer - Option 2 : 20 cm

Given:

The perimeter of two square is 12 cm and 16 cm

Formula used:

The perimeter of square = 4 × (side)

Area of the square = (Side)2

Calculations:

The perimeter of square = 4 × (side) 

Side of first square = 12/4 = 3 cm

Side of second square = 16/4 = 4 cm

Area of the 3rd square = (32 + 42)

⇒ (9 + 16) = 25 cm2

Side of third square = √25 = 5 cm

Perimeter of 3rd square = 4 × 5 = 20 cm

∴ Required perimeter of the third square is 20 cm

132.

किसी पानी की बूंद का व्यास 1 cm का 10वां भाग है। किसी शंक्वाकार पात्र की ऊंचाई उसके आधार के व्यास के बराबर है। यदि पात्र में 32000 पानी की बूंदों को एकत्रित किया जा सकता हो तब पात्र की ऊंचाई ज्ञात करों?A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
पानी की बूंद की त्रिज्या `=1/20cm`
गोले का आयतन `=4/3pixx1/20xx1/20xx1/20`
माना शंकु की त्रिज्या `=R`
Height `=2R`
According to question
`1/3pixxRxxRxx2R`
`=4/3pixx1/20xx1/20xx1/20xx32000`
`R^(3)=(2xx32000)/(20xx20xx20)=64000/(20xx20xx20)`
`R^(3)=(40xx40xx40)/(20xx20xx20)`
`R=40/20=2`
ग्लास ऊंचाई
`=2R=2xx2=4cm`
133.

एक टैंट में 5 व्यक्ति रहते हैं। यदि प्रत्येक व्यक्ति को `16 m^(2)` फर्श तथा `100 m^(3)` हवा चाहिए तो उस शंकु की न्यूनतम ऊंचाई क्या होगी जिसमें ये सभी व्यक्ति आ सकें।A. 16 mB. 18.75 mC. 10.25 mD. 20 m

Answer» Correct Answer - B
माना कि शंकु की ऊंचाई `h` metre
`implies` Total area of ground will be required
ग्राउण्ड का कुल अभीष्ट क्षेत्रफल
`implies` हवा का कुल आयतन
`=100xx5m^(3)=500m^(3)`
`implies` शंकु का आयतन `=500m^(3)`
`implies 1/3` ग्राउण्ड का क्षेत्रफल `xx` ऊंचाई `=500`
`implies 1/3xxpir^(2)xxh=500`
`=1/3xx80xxh=500`
`implies` Height `=(500xx3)/80`
`implies` शंकु की ऊंचाई
`=18.75`metres
134.

Take `pi=22/7` किसी शंक्वाकार टैंट के आधार का व्यास 19.2 मी. है और उसकी ऊंचाई 2.8 मीटर है इस प्रकार का टैंट लगाने के लिए कैनवस का क्षेत्रफल (वर्ग मीटर में) लगभग होगा?A. 3017.7B. 3170C. 301.7D. 30.17

Answer» Correct Answer - C
Radius `=("diameter")/2`
`=19.2/2=9.6m`
Height `=2.8`
`l^(2)=r^(2)+h^(2)=9.6^(2)+2.8^(2)`
L `=92.16+7.84=100`
`l=sqrt(100)=10m`
केनवस का क्षेत्रफफल `=pirl`
`=22/7xx9.6xx10=301.7`
135.

Take `pi=3.14` किसी शंक्वाकार टैंट के आधार की त्रिज्या 12 m तथा ऊंचाई 9m हैं। टैंट को बनाने में प्रयुक्त कपड़े का मूल्य ज्ञात करें, जबकि प्रति `m^(2)` कपड़े का मूल्य रू0 120 है?A. Rs 67830B. Rs. 67800C. Rs. 67820D. Rs. 67824

Answer» Correct Answer - D
`r=12m, h=9m`
`1=sqrt(r^(2)+h^(2))=sqrt(12^(2)+9^(2))=15m`
कपड़े का खर्च
`=`पृष्ठीय क्षेत्रफल `xx` 1 `m^(2)` का खर्च
`=pirlxx120`
`=3.14xx12xx15xx120=Rs. 67824`
136.

दो लम्बवृत्तीय बेलनों की त्रिज्याओं का अनुपात `2:3` है और उनकी ऊंचाई `5:3` के अनुपात मे है उनके आयतनों का अनुपात है।A. `27:20`B. `20:27`C. `9:4`D. `4:9`

Answer» Correct Answer - B
`(R_(1))/(R_(2))=2/3,(H_(1))/(H_(2))=5/3`
आयतन का अनुपात
`=(V_(1))/(V_(2))=(piR_(1)^(2)H_(1))/(piR_(2)^(2)H_(2))`
`((R_(1))/(R_(2)))^(2)xx((H_(1))/(H_(2)))`
`=(2/3)xx(5/3)`
`=4/9xx5/3`
`=20/27`
137.

बराबर ऊंचाई वाले दो शंकुओं के व्यास का अनुपात `3:4` है तब आयतनों का अनुपात ज्ञात करें?A. `3:4`B. `9:16`C. `16:9`D. `27:64`

Answer» Correct Answer - B
शंकु के आयतन का अनुपात
`=(1/3pir_(1)^(2)h)/(1/3pir_(2)^(2)h)=((r_(1))/(r_(2)))^(2)=(3/4)^(2)=9/16`
`=9:16`
138.

दो गोलों, के पृष्ठ क्षेत्रफलों का अनुपात `4:9` है। उनके आयतनों का अनुपात ज्ञात करें?A. `2:3`B. `4:9`C. `8:27`D. `64:729`

Answer» Correct Answer - C
गोलों के पृष्ठीय क्षेत्रफल का अनुपात
`(4pir_(1)^(2))/(4pir_(2)^(2))=4/9`
`(r_(1))/(r_(2))=2/3` आयतन का अनुपात
`=(4/3pir_(1)^(3))/(4/3pir_(2)^(3))=((r_(1))/(r_(2)))^(3)=(2/3)^(3)=8/27`
`=8:27`
139.

चार वृत्त जिनमें प्रत्येक की त्रिज्या a यूनिट है एक दूसरे को स्पर्श करते है। उनके द्वारा घेरा गया क्षेत्रफल वर्ग यूनिट क्या है?A. `3a^(2)`B. `(6a^(2))/7`C. `(41a^(2))/7`D. `(a^(2))/7`

Answer» Correct Answer - B
अभीष्ट क्षेत्रफल
`=` वर्ग का क्षेत्रफल `-` एक वृत्त का क्षेत्रफल
`=(2a)^(2)-pi(a)^(2)`
`=4a^(2)-22/7a^(2)`
`=(28a^(2)-22a^(2))/7=(6a^(2))/7`
140.

यदि 12 सेमी. आधार वाले एक त्रिभुज का क्षेत्रफल 12 सेमी. भुजा वाले एक वर्ग के क्षेत्रफल के बराबर हो तो त्रिभुज का शीर्षलम्ब है?A. 12 cmB. 24 cmC. 18 cmD. 36cm

Answer» Correct Answer - B
वर्ग का क्षेत्रफल `=(12)^(2)=144cm^(2)`
त्रिभुज का क्षेत्रफल
`=1/2xx` base `xx` height
`=1/2xx12xx` height
`=1/2xx12xx` height `=144`
height `=(144xx2)/12=24cm`
141.

The ratio of the perimeter of a rectangle and the perimeter of a square is 7 : 6. The breadth of the rectangle is equal to the side of the square. If the length of the rectangle is 40 cm, then what is the ratio of the area of the square to the area of the rectangle?1. 14 : 132. 13 : 143. 3 : 44. 4 : 35. None of these

Answer» Correct Answer - Option 3 : 3 : 4

Given:

Ratio of perimeter of a rectangle and perimeter of a square = 7 : 6

Breadth of rectangle = Side of square

Length of rectangle = 40 cm

Formula used:

(i) Perimeter of rectangle  = 2(l + b)

(ii) Area of rectangle = l × b

Where,

l = length of rectangle

b = breadth of rectangle

(iii) Area of square = (a)2

(iv) Perimeter of square = 4a

Where,

a = side of square

Calculation:

Ratio of perimeter of a rectangle and perimeter of a square = 7 : 6

{2(l + b)}/4a = 7/6

⇒ 12(l + b) = 28a

⇒ 12(40 + a) = 28a

⇒ 480 + 12a = 28a

⇒ 28a – 12a = 480

⇒ 16a = 480

⇒ a = 30 cm

Area of square = (30)2

⇒ 900 cm2

Area of rectangle = l × b

⇒ 40 × 30

⇒ 1200 cm2

The ratio of the area of the square to the area of rectangle = 900 : 1200

⇒ 3 : 4

 The ratio of the area of the square to the area of the rectangle is 3 : 4

142.

The total area of a circle and a square is equal to 2611 sq. cm. The diameter of the circle is 42 cm. What is the sum of the circumference of the circle and the perimeter of the square?(Take π = \(\frac{22}{7}\)) 1. 280 cm2. 272 cm3. 380 cm4. Cannot be determined

Answer» Correct Answer - Option 2 : 272 cm

Given:

The total area of a circle and a square = 2611 cm2 

The diameter of the circle = 42 cm

Formula used:

If the diameter of a circle is d, then the area of a circle = (π/4) × d2 

and circumference of a circle = π × d

If the side of a square = a, then an area of a square = a2

and perimeter = 4 × a

Calculation:

The total area of a circle and a square = 2611 cm2 

⇒ (π/4) × d+ a2 = 2611

⇒ (22/7)× (1/4) × 422 + a2 = 2611

⇒ (38808/28) + a2 = 2611

⇒ 1386 + a2 = 2611

⇒ a2 = 2611 - 1386

⇒ a2 = 1225

⇒ a = 35 cm

Now, the sum of the circumference of the circle and the perimeter of the square =  perimeter of a square + circumference of a circle

⇒ 4 × 35 + π × 42

⇒ 140 + (22/7) × 42

⇒ 140 + 132

⇒ 272 cm

∴ The sum of the circumference of the circle and the perimeter of the square is 272 cm.

143.

If the product of height and base of triangle is 5/14 of square of radius of a circle, then what will be the ratio of area of circle to area of triangle?1. 22 ∶ 102. 88 ∶ 53. 44 ∶ 54. 66 ∶ 155. 88 ∶ 15

Answer» Correct Answer - Option 2 : 88 ∶ 5

Given:

Product of base and height of triangle = 5/14 of radius2 

Formula used:

Area of circle = πr2 

Area of triangle = (Base × Height)/2

Calculation:

Let the base of the triangle be B and height of the triangle be H and the radius of the circle be r

According to question

B × H = 5/14 of r2 

Area of circle ∶ Area of triangle = πr2 ∶ (BH)/2

⇒ Area of circle ∶ Area of triangle = \(\frac{{\frac{{22}}{7}{r^2}}}{{\frac{1}{2}BH}}\)

⇒ Area of circle ∶ Area of triangle = \(\frac{{\frac{{22}}{7}{r^2}}}{{\frac{1}{2} \times \frac{5}{{14}}{r^2}}}\)

⇒ Area of circle ∶ Area of triangle = 88/5

∴ Area of circle ∶ Area of the triangle is 88 ∶ 5

144.

A circle, with radius 8 cm, which has the area equal to the area of a triangle with base 8 cm. Then the length of the corresponding altitude of triangle is:1. 38π cm2. 16π cm3. 18π cm4. 8π cm

Answer» Correct Answer - Option 2 : 16π cm

Given:

Radius of circle = 8 cm

An area of a circle = An area of a triangle

The base of a triangle = 8 cm 

Formula used:

If the diameter of a circle is r, then the area of a circle = π × r2 

If in a triangle, the base is b and altitude is h, then an area of triangle = (1/2) × b × h

Calculation:

An area of a circle = An area of a triangle

⇒ π × r2 = (1/2) × b × h

⇒ π × 82 = (1/2) × 8 × h

⇒ h = (π × 64 × 2)/8

⇒ h = 128 π/8

⇒ h = 16π cm

∴ The length of the corresponding altitude of the triangle is 16π​​ cm.

145.

If the circumference of a circle is 18π cm, then the area of the circle isA. 18π square cmB. 18π2 square cmC. 81π square cmD. 9π square cm1. A2. D3. B4. C

Answer» Correct Answer - Option 4 : C

Given:

Circumference of circle = 18π cm

Formula used:

Circumference of circle = 2πr

Area of circle = πr2

Calculation:

Circumference of circle = 2πr

⇒ 18π = 2πr 

⇒ r = 9 cm

Area of circle = πr2

⇒ Area = 92 × π 

⇒ Area = 81π sq. cm

∴ The area of circle is 81π square cm.

146.

A cylinder is cut into three parts by two cuts parallel to its base. Cuts are made on equal heights. If the radius of that cylinder is 3 times its height, Find the ratio between Increased surface area and original Surface area.1. 5 : 22. 3 : 23. 3 : 44. 4 : 3

Answer» Correct Answer - Option 2 : 3 : 2

Given:

Radius of original cylinder is 3 times the height.

Two cuts made parallel to base of equal heights.

Formula Used:

Total Surface Area = 2πr(h + r), where r is radius of base and h is height of cylinder

Concept Used:

Since Base of a cylinder is circle, so after every cut parallel to base, there will be an increase of two new circles with area πr2 each.

Calculation:

Let the height of original cylinder be 3x then radius will be 9x units

Total Surface Area of original Cylinder = (2π × 9x)(3x + 9x)

⇒ T.S.A. = 216πx2

Using the Statement of concept used, 

One cut will produce 2 new circles then 2 cuts will form 4 new circles.

Increased Surface Area = 4π × (9x)2

⇒ Increased Surface Area = 324πx2

 Increased surface area/Original surface area = 324πx2/216πx2

⇒ Increased surface area/Original surface area = 3/2

∴ The ratio of Increased surface area and original Surface area is 3 : 2

147.

A running circular track of 6 metre wide is constructed around a circular park of radius 3 metre. Find the area of a track.1. 72π cm2 2. 36 π cm2 3. 54 π cm2 4. 74π cm2 

Answer» Correct Answer - Option 1 : 72π cm

Given

Radius of circular park = 3 metre

Width of track = 6 metre

Concept

Area of circular track = Area of outer circle – Area of inner circle

Formula used

Area of circle = πr2

Explanation

Area of track =πr12- πr2 2

r1 and r2 represents radius of outer and inner circle

Area of track= π(r1 – r2) (r1 + r2)

⇒ π( 9 – 3) (9 + 3)

⇒ 72π cm2
148.

The total surface area of a hemisphere is 41.58 cm2. Find the total surface area of a sphere with the same radius.1. 26.42 cm22. 55.44 cm23. 13.43 cm24. 27.72 cm2

Answer» Correct Answer - Option 2 : 55.44 cm2

Given:

Total surface area of a hemisphere = 41.58 cm2

Radius of hemisphere = Radius of sphere.

Formula Used:

Total surface area of a hemisphere = 3πr2

Total surface area of a sphere = 4πr2 

Calculation:

Total surface area of a hemisphere is 41.58 cm2

⇒ 3πr2 = 41.58

⇒ r2 = 41.58/3π 

As the radius of a sphere is the same as that of a hemisphere.

⇒ Total surface area of a sphere = 4πr2 

Using the above value of r2

⇒ Total surface area of a sphere = 4π × (41.58/3π)

⇒ Total surface area of a sphere = 4 × 13.86

⇒ Total surface area of a sphere = 55.44 

∴ Total surface area of a sphere is 55.44 cm2

149.

Some Cylindrical glasses of Radius 7 cm and height 4 cm are filled with wine from a conical tank of radius 21 cm and height 15 cm. Find the number of glasses that can be filled with wine of conical tank.(Answer should be in integer)1. 122. 143. 164. 11

Answer» Correct Answer - Option 4 : 11

Given:

For Cylinder,

Radius (r) = 7 cm

Height (h) = 4 cm

For Cone,

Radius (R) = 21 cm

Height (H) = 15 cm

Formula Used:

Volume of cone = (1/3)πR2H

Volume of cylinder = πr2h

Concept Used;

Volume of cone = n × Volume of cylinder, where n is the number of cylindrical glasses

Calculation:

Let the number of cylindrical glasses be n

Using concept,

(1/3)πR2H = n × πr2h

(1/3) × (21)2 × 15 = n × (7)2 × 4

⇒ n = (21 × 21 × 15)/(7 × 7 × 4 × 3)

⇒ n = 11.25

We have to take integer as our answer

∴ The number of glasses filled with wine is 11.

150.

The length of a room floor exceeds its breadth by 20 m. The area of the floor remains unaltered when the length is decreased by 10 m and the breadth is increased by 5 m. The area of the floor is :1. 280 m22. 250 m23. 300 m24. 325 m2

Answer» Correct Answer - Option 3 : 300 m2

Given:

The length of a room floor exceeds its breadth by 20 m. The area of the floor remains unaltered when the length is decreased by 10 m and the breadth is increased by 5 m

Concept used:

Area of Rectangle = Length × Breadth

Calculation:

Let the breadth of the floor be x m.

Length = (x + 20) meter

The area of the floor = Length × Breadth 

Area of the floor = (x + 20) x m2

According to the question

Length is decreased by 10 m = (x + 20 - 10) = (x + 10) m

Breadth is increased by 5 m = (x + 5) m

⇒ (x + 10) (x + 5) = x (x + 20)

⇒ x2 + 15x + 50 = x2 + 20x

⇒ 5x = 50

⇒ x = 10 meter

Length of the floor = x + 20 = 30 m

Area of the floor = 30 × 10

∴ Area of the floor = 300 m2