Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

8 cm त्रिज्या वाले वृत्त के अंदर बने वर्ग का क्षेत्रफल ज्ञात करें?A. 256 sq cmB. 250 sq. cmC. 128 sq. cm`D. 125 sq. cm

Answer» Correct Answer - C
वर्ग का विकर्ण `=` वृत्त का व्यास
`=8xx2=16 cm`
`:.` side of square `=16/(sqrt(2))=8sqrt(2)cm`
`implies` area of square `=(8sqrt(2))^(2)`
`=128 cm^(2)`
252.

`8sqrt(2)` सेमी. ‌ ‌विकर्ण वाले वर्ग का क्षेत्रफल ज्ञात करेंA. 64 `cm^(2)`B. 29 `cm^(2)`C. 56 `cm^(2)`D. 128 `cm^(2)`

Answer» Correct Answer - A
Side of square `(8sqrt(2))/(sqrt(2))=8cm`
`:.` Area of square `=8xx8=64cm^(2)`
253.

एक तार को वर्ग के रूप में मोड़ा गया, जिसका क्षेत्रफल `81 cm^(2)` है। यदि उसी तार को अर्धवृत्त को रूप में मोड़ा जाये तो अर्धवृत्त की त्रिज्या ज्ञात करें?A. 126B. 14C. 10D. 7

Answer» Correct Answer - D
`a^(2)=81, a=9`
`implies` वर्गों का परिमाप `=9xx4=36cm`
`implies2r+pir=36`
`r(2+pi)=36`
`r=36/(2+22/7)=7cm`
254.

एक आयताकार पानी की टंकी 80 मी `xx` 40 मी. है। इसमें 40 वर्ग सेमी. का पाईप, जो खोलने पर 10 किमी/घण्टा की गति से पानी भरता है। बताइए टंकी में आधे घण्टे में जल स्तर कितना ऊपर होगा?A. `3//2 cm`B. `4//9` cmC. `5//9` cmD. `5//8`cm

Answer» Correct Answer - D
Let the water, `h` mtr. Will rise in the tank
`lxxbxxh=` Area `xx` speed `xx` time
`80xx40xxh=40/(100xx100)xx10000xx1/2`
`h=1/160m=100/160cm=5/8cm`
255.

किसी घन का विकर्ण `8sqrt(3)` cm है सम्पूर्ण पृष्ठ क्षेत्रफल ज्ञात करें?A. `192 cm^(2)`B. `512 cm^(2)`C. `768 cm^(2)`D. `384 cm^(2)`

Answer» Correct Answer - D
Side of cube (a)
`=(8sqrt(3))/(sqrt(3))=8cm`
`implies` Total surface area `=6(a)^(2)`
`=6xx8^(2)=384cm^(2)`
256.

1 सेमी. और 6 सेमी. त्रिज्या के दो ठोस धात्विक गोलकों को पिघलाने पर 1 सेमी. मोटाई का खोखला गोला बनता है । खोखले गोले की बाहरी त्रिज्या क्या होगी?A. 8 सेमी.B. 9 सेमी.C. 6 सेमी.D. 7 सेमी.

Answer» Correct Answer - B
प्रथम ठोस गोले की त्रिज्या `=R=6cm`
द्वितीय ठोस गोले की त्रिज्या `=r=1cm`
खोखले गोले की आंतरिक त्रिज्या `x`
खोखले गोले की बाहरी त्रिज्या `x+q`
So `4/3pi(R^(3)+r^(3))=4/3pi{(x+1)^(3)-x^(3)}`
`216+1=x^(3)+1+3x(x+1)-x^(3)`
`216=3x(x+1)`
`72=x^(2)+x`
`implies x^(2)+x-72=0`
After solving
`x=8cm`
खोखले गोले की बाहरी त्रिज्या
`=x+1=8+1=9cm`
257.

किसी 200 मीटर लम्बे तथा 150 मीटर चौड़े टैंक में 0.3 मी `xx` 0.2 मी चौड़े पाईप से 20 किमी/घंटे की चाल से पानी गिरता हें पानी का तल 8 मी. ऊंचाई उठने में समय ज्ञात करें?A. 50B. 120C. 150D. 200

Answer» Correct Answer - D
Let the no. of hours be `x`
`implies(0.3xx0.2xx20000)xx x=200xx150x8`
`impliesx=(200xx150xx8)/(3xx2xx200)=200` hrs.
258.

किसी `1km^(2)` भूमि पर `2cm` वर्षा हुई। माना कि केवल 50% पानी ही संग्रहित हो पाया तथा `10 x xx 10 m` आधार वाले एक संग्रहालय में एकत्रित किया गया। पानी का उठा तल ज्ञात करें?A. 1 kmB. 10 mC. 10 cmD. 1 m

Answer» Correct Answer - B
Let the increase in level
`=xm`
`implies(1000xx1000xx2/100)xx1/2=100xx10xx x`
`implies x=10m`
259.

14 सेमी. व्यास वाले पाईप से किसी 50 मी. लम्बे तथा 44 मी. चौड़े टैंक में 5 किमी/घंटा की चाल से पानी गिरता है। पानी की सतह का 7 सेमी. ऊंचा उठने में लगा समय (घंटे में) ज्ञात करें?A. 2B. `1 1/2`C. `3`D. `2 1/2`

Answer» Correct Answer - A
माना टैंक को भरने में लगा समय
`=x` hrs
`implies(pir^(2)h)xx x=50xx44xx7/100`
`implies x=(50xx44xx7xx7xx100xx100)/(22xx7xx7xx100xx50000`
`=2hrs`
260.

1 हेक्टेयर क्षेत्रफल वाले छत से 5 सेमी. वर्षा हुई । एकत्रित वर्षा के पानी का आयतन `m^(3)` में ज्ञात करें?A. 75B. 750C. 7500D. 75000

Answer» Correct Answer - B
`implies` मैदान का क्षेत्रफल
`1.5` hectares `=1.5xx10000m^(2)`
`implies 15000m^(2)`
1 hectare `=10000m^(2)`
`implies` वर्षा का स्तर `=` पानी का स्तर `=5cm=5/100m`
`:.` एकत्रित जल का आयतन
`implies 15000xx5/100=750m^(3)`
261.

एक 3m गहरी तथा 40 m चौड़ी नदी `2km//hr` की चाल से बहती है। नदी द्वारा समुद्र में प्रति मिनट गिरे पानी का आयतन ज्ञात करें?A. `400000 m^(3)`B. `4000000m^(3)`C. `40000m^(3)`D. `4000 m^(3)`

Answer» Correct Answer - D
पानी की अभीष्ट मात्रा
`(3xx40xx2000)/60=4000m^(3)`
262.

A pipe is connected with a spherical tank empty the tank at 14 litres per second and radius of tank is 6.3 m. how much time taken by pipe to empty the tank.1. 1247.4 minutes2. 1257.4 minutes3. 1247.2 minutes4. 1257.2 minutes

Answer» Correct Answer - Option 1 : 1247.4 minutes

Given:

Radius of tank, r = 6.3 m

Speed of water through pipe = 14 l/s

Formula used:

Volume of tank = (4/3) × πr3 

1 m3 = 1000 litres

Calculation:

Volume of tank = (4/3) × πr3 

⇒ Volume of tank = (4/3) × (22/7) × (6.3)3

⇒ 1047.816 m3

Volume of petrol in 1 second = 14 litres

⇒ Volume of petrol in 1 second = (14/1000) m3 

Time taken by pipe to empty the tank = (Volume of tank)/(Volume of petrol in 1 second)

⇒ (1047.816)/(14/1000)

⇒ 74844 seconds

⇒ (74844)/60 minutes

⇒ 1247.4 minutes

∴ The time taken by pipe to empty the tank is 1247.4 minutes

263.

A pipe is connected with a spherical tank which can empty the tank at 14 litres per second and radius of tank is 6.3 m. How much time taken by pipe to empty the tank.1. 1247.4 minutes2. 1257.4 minutes3. 1247.2 minutes4. 1257.2 minutes

Answer» Correct Answer - Option 1 : 1247.4 minutes

Given:

The radius of the tank, r = 6.3 m

Speed of water through pipe = 14 litres/sec

Formula used:

Volume of tank = (4/3) × πr3 

1 m3 = 1000 litres

Calculation:

Volume of tank = (4/3) × πr3 

⇒ The volume of tank = (4/3) × (22/7) × (6.3)3

⇒ 1047.816 m3

The volume of pipe in 1 second = 14 litres

⇒ The volume of pipe in 1 second = (14/1000) m3 

Time is taken by pipe to empty the tank = (Volume of the tank)/(Volume of pipe in 1 second)

⇒ (1047.816)/(14/1000)

⇒ 74844 seconds

⇒ (74844)/60 minutes

⇒ 1247.4 minutes

∴ The time taken by pipe to empty the tank is 1247.4 minutes

264.

The largest of sphere is cut from a cube of side 14 cm. Find the volume of remaining cube.1. 1206.66 cm32. 1306.67 cm33. 1356.33 cm34. 1256.33 cm3

Answer» Correct Answer - Option 2 : 1306.67 cm3

Given:

Side of cube = 14 cm

Formula used:

Volume of sphere = (4/3)π × r3

Volume of cube = (side)3

Calculation:

Side of cube = Diameter of sphere

⇒ Diameter of sphere, d = 14 cm

Radius of sphere, r = d/2 = 7 cm 

Volume of cube = (14)3

⇒ Volume of cube = 2744 cm3

Volume of sphere = (4/3)π × r3

⇒ Volume of sphere = (4/3)(22/7) × (7)3

⇒ (4 × 22 × 343)/21

⇒ 1437.33 cm3

Volume of remaining cube = (Volume of cube ) – (Volume of sphere)

⇒ Volume of remaining cube = 2744 – 1437.34

⇒ 1306.67 cm3

∴ Volume of remaining cube is 1306.67 cm3.

265.

If the angle formed by the bisector of any two angles of the triangle is zero then the triangle will be?1. Right angle triangle2. Equilateral triangle3. Scalene triangle4. None of these

Answer» Correct Answer - Option 4 : None of these

Given:

The angle formed by bisector of any two angles of triangle is zero

Formula Used:

In triangle ABC if OB and OC are the angle bisector

∴ ∠BOC = ∠A/2 + 90

Calculation:

Let ABC is a triangle and OB and OC are the interior angle bisector of triangle ABC also it is given that the angle formed by bisector of any two angles of triangle is zero

∴ ∠BOC = 0

⇒ ∠A/2 + 90 = 0

⇒ ∠A = - 180°

This is not possible 

266.

if (2x – 30)°, 2x° and (3x – 40)° are the angles in Arithmetic progression then find the largest angle?1. 170°2. 110°3. 130°4. 140°

Answer» Correct Answer - Option 1 : 170°

Given:

Three angles (2x – 30)°, 2x° and (3x - 40)° are given

Formula Used:

If a1, a2 and a3 are the terms in arithmetic progression, then

a2 – a1 = a3 – a2

Calculation:

It is given in the question that the angles are in arithmetic progression,

2x – (2x – 30)° = (3x – 40)° - 2x

⇒ 2x – 2x + 30 = x – 40

⇒ 30 = x – 40

⇒ x = 70°

Angles = 110°, 140° and 170° 

∴ The largest angle is 170°

267.

If the side of an equilateral triangle is 10 cm, then find the area of the triangle.1. 10√3 cm22. 25√3 cm23. 50√3 cm2 4. 75√3 cm2

Answer» Correct Answer - Option 2 : 25√3 cm2

Given:

The side of the equilateral triangle = 10 cm

Formula used:

Area of equilateral triangle = (√3/4) × (side)2 

Calculation:

Area of the triangle = (√3/4) × 102 

⇒ Area of the equilateral triangle = 100√3/4 = 25√3 cm2 

∴ Area of the equilateral triangle is 25√3 cm2 

268.

An agricultural field is in the form of a rectangle having length X1 meters and breadth X2 meters (X1 and X2 are variable). If X1 + X2 = 40 meters, then the area of the agricultural field will not exceed which one of the following values?1. 400 sq m2. 300 sq m3. 200 sq m4. 80 sq m

Answer» Correct Answer - Option 1 : 400 sq m

Given 

length of rectangle  = X1

Breadth of rectangle = X2

Formula Used 

Area of rectangle = Length × Breadth 

Calculation 

⇒ X1 + X= 40 

⇒ We know that, all the rectangle, a square has largest area 

⇒ For given rectangle to be square X1 = X2

⇒ X1 = X2 = 20 (for maximum area) 

⇒ so Maximum Area = 20 × 20 = 400 sq m

 

269.

If the length of a side of an equilateral triangle is 6 cm, then its height is:1. \(3\sqrt{3} \ cm\)2. \(9\sqrt{3} \ cm\)3. 3 cm4. \(5\sqrt{3} \ cm\)

Answer» Correct Answer - Option 1 : \(3\sqrt{3} \ cm\)

Given:

Length of a side of an equilateral triangle = 6 cm

Formula used:

Height (h) = (a × √3)/2

Calculation:

Height = (6 × √3)/2

\(\therefore Height= 3\sqrt{3} \ cm\)

270.

A square has a side length of 6 meter, what will be its Area?1. 6 meter22. 36 meter23. 12 meter24. 24 meter2

Answer» Correct Answer - Option 2 : 36 meter2

Given:

Side length = 6 meter

Formula used:

Area = side2

Calculation:

Area of square = (6 m)2

⇒ 36 m2

∴ The area of square is 36 m2

271.

A water tank is 15 meter long, 10 meter wide and 3 meter deep. The total cost to repair its four walls and bottom at the rate of 24 rupees per square meter is:1. Rs. 96002. Rs. 48003. Rs. 36004. Rs. 7200

Answer» Correct Answer - Option 4 : Rs. 7200

Given:

Length of the water tank = 15 m 

The breadth of the water tank = 10 m 

Depth of the water tank = 3 m

The cost of repair = Rs 24 per m2

Formula used:

The total surface area of the cuboid = 2(lb + bh + lh)

Calculation:

The upper part of the tank is not included, so

The area of the five walls = 2(lb + bh + lh) – lb

⇒ 2(bh + lh) + lb

⇒ 2(10 × 3 + 15 × 3) + 15 × 10

⇒ 2(30 + 45) + 150

⇒ 150 + 150 = 300 m2

Total cost of repair walls = 300 × 24 = 7200

∴ The total cost of repair walls of the water tank is Rs 7200

272.

How many surfaces are there in a cube?1. 122. 83. 64. 10

Answer» Correct Answer - Option 3 : 6

Calculation:

A cube is a three dimensional solid object bounded by six square faces with three meeting at each vertex.

It has 6 faces, 12 edges and 8 vertices

∴ A cube has 6 surfaces

273.

If a tank is 5 meter long, 4 meter wide and 3 meter deep then find the capacity of tank?1. 90000 liters2. 80000 liters3. 50000 liters4. 60000 liters

Answer» Correct Answer - Option 4 : 60000 liters

Given:

Length of tank = 5 meter

Width of tank = 4 meter

Depth of tank = 3 meter

Formula used:

1 m3 = 1000 litres

Calculation:

Capacity of tank = (5 × 4 × 3) × 1000 litres

⇒ 60 × 1000 litres

⇒ 60000 litres

∴ The capacity of tank is 60000 litres

274.

The sum of the squares of the sides of a rhombus is 900 m2. What is the side of the rhombus.1. 16 m2. 15 m3. 14 m4. 17 m

Answer» Correct Answer - Option 2 : 15 m

Given:

4(side of rhombus)2 = 900 m2

Concept:

The side of a rhombus is equal.

Calculation:

Let the side of the rhombus 'a'

∴ Sum of side of Rhombus = 4a

∵ 4a2 = 900 m2

⇒ a2 = 900/4 m2

⇒ a = √(900/4) m

⇒ a = 30/2 m

⇒ a = 15 m

275.

Find the area of triangle whose length of median is 9 cm, 10 cm, and 11 cm?1. 36√2 square cm2. 20√6 square cm3. 40√2 square cm4. 30√3 square cm

Answer» Correct Answer - Option 3 : 40√2 square cm

Given:

Length of medians is 9 cm, 10 cm, and 11 cm

Formula used/Concept Used:

The formula used to calculate the area of triangles when length of medians is given

s = (u + v + w)/2

Area of triangle = (4/3) × √s × (s - u) × (s - v) × (s - w)

Where u, v and w are the length of medians

Calculation:

Length of median is 9 cm, 10 cm, and 11 cm

∴ s = (9 + 10 + 11)/2 = 15 cm

Now, Area of triangle = (4/3) × √15 × (15 - 9) × (15 - 10) × (15 - 11) = (4/3) × 30√2 = 40√2

∴ The area of triangle is 40√2 square cm

276.

What is the area of square whose length of diagonal is 7.5√2 cm?1. 56.25 square cm2. 52.25 square cm3. 45.25 square cm4. 42.25 square cm

Answer» Correct Answer - Option 1 : 56.25 square cm

Given:

The length of the diagonal is 7.5√2 cm

Formula used:

Area of square = Side × Side

Diagonal of square = √2 × side

Calculation:

The length of diagonal is 7.5√2 cm

∴ 7.5√2 = √2 × side

⇒ Side = 7.5 cm

Now, Area of square = 7.5 × 7.5 = 56.25 square cm

∴ Area of square is 56.25 square cm
277.

What is the height of equilateral triangle whose perimeter is 25√3 cm?1. 7.5 cm2. 12.5 cm3. 22.5 cm4. 25 cm

Answer» Correct Answer - Option 2 : 12.5 cm

According to the given question

Given:

Perimeter of equilateral triangle is 25√3 cm

Formula used/Concept Used:

Height of equilateral triangle = a√3/2

Where ‘a’ is the side of equilateral triangle

Perimeter of equilateral triangle = 3 × side

Calculation:

The perimeter of equilateral triangle is 25√3 cm

⇒ Side = 25√3/3 cm

⇒ a = 25√3/3 cm

Now, the height of equilateral triangle = (25√3/3) × (√3/2) = 12.5 cm

∴ The height of equilateral triangle is 12.5 cm

278.

The width of a rectangular hall is \(\frac{3}{4}\) of its length. If the area of the hall is 300 square meter, then the difference between its length and width in meters is1. 32. 43. 54. 12

Answer» Correct Answer - Option 3 : 5

Given:

The width of the hall(rectangular) = 3/4 times of its length

Area of the hall = 300 m2

Formula used:
Area of a rectangle = lb

l = length of the rectangle; b = width of the rectangle

Calculation:

b : l = 3 : 4

Let the width be 3x and length be 4x

According to the question:

lb = 300

⇒ 12x2 = 300

⇒ x2 = 25

⇒ x = 5

∴ Difference between length and width of the hall = 4x - 3x = 5 m

279.

Two sides of a triangle are 12 cm and 14 cm and the perimeter of the triangle is 36 cm. What is the third side?1. 2 cm2. 10 cm3. 26 cm4. 17 cm

Answer» Correct Answer - Option 2 : 10 cm

Given:
Length of two sides of the triangle is 12 cm and 14 cm

Perimeter of the triangle = 36 cm

Formula used:

Perimeter of a triangle = Sum of all three sides

Calculation:

According to the question:

36 = 12 + 14 + Length of the third side

∴ Length of the third side = 10 cm

280.

The angle in a semi circle is a ______.1. acute angle2. obtuse angle3. straight angle4. right angle

Answer» Correct Answer - Option 4 : right angle

Calculations :

When we construct a triangle taking diameter as one of the side, then 

The triangle will always be a right triangle

So, 

The angle in a semi-circle is always a right angle.

∴ The correct answer is option 4.

281.

The circumference of the base of a cylindrical tank of height 19 cm is 396 cm then how much water it can hold1. 245690 cm32. 235006 cm33. 236004 cm34. 237006 cm3

Answer» Correct Answer - Option 4 : 237006 cm3

Given:

Circumference of the tank = 396 cm

Height of the tank = 19 cm

Formula used:

Circumference of the base = 2 π r

The volume of the cylinder = π r2 h

Here, h and r is the height and radius respectively

Calculation:

Circumference of the base = 2 π r

⇒ 2 × 22/7 × r = 396

⇒ r = 63 cm

Now, Quantity of water it can hold = π r2 h

⇒ 22/7 × 63 × 63 × 19

⇒ 237006

∴ The quantity of water tank can hold is 237006 cm3

282.

The height of the cylinder whose volume is 1.54 m3 and diameter of the base is 140 cm, is:1. 2 m2. 1.5 m3. 1.2 m4. 1 m

Answer» Correct Answer - Option 4 : 1 m

Given:
Volume(V) of the cylinder = 1.54 m3

Diameter of the base of the cylinder = 140 cm

Formula used:

V of a cylinder = πr2h

r = radius of the base, h = height of the cylinder

Calculation:

r = 140/2 = 70 cm = 0.7 m

According to the question:

1.54 = (22/7) × 0.7 × 0.7 × h

⇒ h = 1 

∴ Height of the cylinder = 1 m

283.

Some small cubes of same height 7 cm but variable length and width are put inside a large cuboid of height 21 cm. Length and width of cuboid is 32 cm and 24 cm, respectively. Small cubes are put such that cubes at the bottom most layer is of similar base area; second layer contains all the cubes of similar base area and third layer have all the cubes of similar base area.Which of the following statement(s) given below is / are TRUE?A: If side of each small cubes at bottom most layer is 8 cm, then maximum number of small cubes that can be put at bottom most layer is 12.B: If maximum of 48 cubes can be put at second layer, then side of each cube at second layer is 6 cm.C: If side of each small cubes at third layer is 1.6 cm, then maximum number of small cubes that can be put at third layer is 300.1. C2. A and B3. A and C4. B and C

Answer» Correct Answer - Option 3 : A and C

GIVEN:

Three statements.

CONCEPT:

Mensuration

FORMULA USED:

Volume of cuboid = LBH

Volume of cube = S2

CALCULATION:

A:

Maximum number of small cubes that can be put at bottom most layer = Base area of large cuboid / Base area of one small cube

= (32 × 24) / 82

= 4 × 3

= 12

B:

Maximum number of small cubes that can be put at second layer = Base area of large cuboid / Base area of one small cube

48 = (32 × 24) / a2

⇒ a2 = 16

⇒ a = 4

Side of each small cube = a = 4 cm

C:

Maximum number of small cubes that can be put at third layer = Base area of large cuboid / Base area of one small cube

= (32 × 24) / 1.62

= 20 × 15

= 300

Hence, only statements A and C are TRUE.
284.

The diameter of each wheel of the truck is 210 cm. If each wheel rotates 200 times per minute, then what will be the speed of the truck (km/h)?1. 73.1 km/hr2. 74.8 km/hr3. 75.7 km/hr4. 79.2 km/hr5. 80.5 km/hr

Answer» Correct Answer - Option 4 : 79.2 km/hr

Given:

Diameter of each wheel of truck = 210 cm

Rotation of wheel = 200 times/minute

Concept:

Total distance covered by the truck is n times of circumference

Formula used:

Circumference of the circle = 2πr

Calculation:

Circumference of wheel = 2πr

⇒ Circumference of wheel = 2 × (22/7) × 105

⇒ Circumference of wheel = 660 cm

Total distance covered by wheel of the truck = (660 × 200)/(1000 × 100) = (66 × 2)/100 km

Now, Speed of the truck (in km/h) = (66 × 2 × 60)/100 = 79.2 km/h

Speed of truck is 79.2 km/hr

285.

Sourav’s cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 2 dozen caps. 1. 23100 cm22. 26400 cm23.13200 cm24. 46200 cm2

Answer» Correct Answer - Option 3 :

13200 cm2


Given:

Radius of conical cap = 7 cm

Height of conical cap = 24 cm

Formula used:

Curved surface area of cone = πrl

l2 = r2 + h2

Where, r = radius of cone

l = slant height of cone

h = height of cone

Calculation:

l2 = 72 + 242

⇒ l2 = 49 + 576 = 625

⇒ l = √625 = 25 cm

Curved surface area of cone = π × 7 × 25 = 550 cm2

Area of sheet for 2 dozen caps = 550 × 2 × 12 = 13200 cm2

The area of the sheet required to make 2 dozen caps is 13200 cm2

286.

A conical cap has the base radius 12 cm and height 16 cm. What is the cost of painting the surface of the cap at the rate of 1.40 Rs. per sq. cm? 1. Rs. 12762. Rs. 10563. Rs. 10124. Rs. 1254

Answer» Correct Answer - Option 2 : Rs. 1056

Given:

Radius of conical cap = 12 cm

Height of conical cap = 16 cm

Formula used:

Curved surface area of cone = πrl

l2 = r2 + h2

where, r = radius of cone

l = slant height of cone

h = height of cone

Calculation:

l2 = 122 + 162

⇒ l2 = 144 + 256 = 400

⇒ l = √400 = 20 cm

Curved surface area of cone = 22/7 × 12 × 20 = 5280/7 cm2

Cost of painting the surface of the cap = 5280/7 × 1.40 = 1056 Rs.

The cost of painting the surface of the cap at the rate of 1.40 Rs per sq cm is Rs. 1056

287.

If the radius of hemisphere is decreased by 37.5%, then by what percent (approximately) the volume of hemisphere will decrease?1. 74%2. 73%3. 77%4. 75.6%

Answer» Correct Answer - Option 4 : 75.6%

Given:

The radius of the hemisphere is decreased by 37.5%.

Formula used:

The volume of a hemisphere = (2/3)πr3

Where r → The radius of the sphere

Calculations:

Let r1 be the old radius and r2 be the new radius.

As, 37.5% = 37.5/100 = 3/8

According to the question,

The ratio of the old radius to the new one = 8 ∶ (8 - 3) = 8 ∶ 5

So, The ratio of the volumes = {(2/3)π(r1)3} ∶ {(2/3)π(r2)3}

⇒ (r1)3 ∶ (r2)3 = 512 ∶ 125

Decrease = 512 - 125 = 387

% Decrease = (387/512) × 100 ≈ 75.6%

∴ The volume of the hemisphere will decrease by 75.6% approximately

288.

A cylindrical well of height 40 metres and diameter 14 metres is dug in a field 56 metres long and 11 metres wide. The soil taken out is spread evenly on the field. The increase (in metres) in the level of the field is:1. 12 m2. 19 m3. 13.33 m4. 15 m

Answer» Correct Answer - Option 3 : 13.33 m

Given:

Height of the well (H) = 40 m

The radius of the well (r) = 7 m

Length of the field (l) = 56 m

The breadth of the field (b) = 11 m

Formula used:

The volume of a cylinder (V) = πr2H

The volume of a cuboid (V') = l × b × h

Where l → length

b → breadth

h → height of the cuboid

r → radius 

H → height of the cylinder

Calculations:

Let the required height be h.

The volume of earth = (area of the field –  area of the well) × h

So, (22/7) × 7 × 7 × 40 = {56 × 11 - (22/7) × 7 × 7} × h

⇒ h = (154 × 40)/(616 - 154)

⇒ h = 13.33 m

∴  The increase in the level of the field is 13.33 m.

289.

The radii of two circles are 4 cm and 3 cm, respectively. What is the diameter (in cm) of the circle having an area equal to four times the sum of the areas of the two circles?1. 122. 203. 244. 10

Answer» Correct Answer - Option 2 : 20

Given:

The radii of two circles are 4 cm and 3 cm.

Formula Used:

Area of circle = πr2

Here, r = radius of circle

Calculation:

The radii of two circles are 4 cm and 3 cm.

The area of circle having radius 4 cm = π(4)2 = 16π 

The area of circle having radius 3 cm = π(3)2 = 9π 

The sum of area of circles = 16π + 9π  = 25π 

According to the question;

⇒ πr2 = 4 × 25π 

⇒ r2 = 100

⇒ r = 10 cm

Diameter = 2r = 2 × 10 = 20 cm

∴ The diameter of the circle is 20 cm.

290.

A rectangular filed had length 32 cm and breadth 20 cm. How many square tiles of 4 cm should be used to cover the rectangular field?1. 402. 453. 374. 42

Answer» Correct Answer - Option 1 : 40

Given:

Length of rectangular field = 32 cm

Breadth of rectangular field = 20 cm

Length of tile = 4 cm

Formula Used:

Area of square = side × side

Area of rectangle = length × breadth

Calculations:

Length of rectangular field = 32 cm

Breadth of rectangular field = 20 cm

Length of tile = 4 cm

⇒ Area of rectangular field = (32 × 20) = 640 cm2

Area of each tile = (4 × 4) = 16 cm2

⇒ Number of tiles = (640/16) = 40

∴ The number of square tiles used to cover the rectangular field is 40.

291.

The length and breadth of a rectangular floor are 14.35 m and 11.55 m, respectively. How many minimum number of square tiles would be required to cover it completely?1. 13532. 12713. 11074. 1435

Answer» Correct Answer - Option 1 : 1353

Given:

The length and breadth of a rectangular floor are 14.35 m and 11.55 m

Formula used:

Area of Rectangle = Length × breadth

Area of square = (Side)2

Required number = Area of the floor/Area of each tile

Concept used:

We require minimum number of square tiles, the size of the tile is given as the H. C.F of two sides of the room.

Calculation:

Length of rectangular floor = 14.35 × 100 = 1435 cm

Breadth of rectangular floor = 11.55 × 100 = 1155 cm

According to the question:

1155 = 3 × 5 × 11 × 7

1453 = 5 × 7 × 41

H. C. F = 5 × 7 = 35

Now,

Required number = Area of the floor/Area of each tile

⇒ (Length × breadth)/(Side)2

⇒ (1435 × 1155)/(35 × 35)

⇒ 41 × 33 = 1353

∴ The minimum number of square tiles are 1353.

292.

If the perimeter of equilateral triangle is 36 cm, what is the area of given triangle? (√3 = 1.732) 1. 62 cm22. 62.352 cm23. 60.352 cm24. 50 cm2

Answer» Correct Answer - Option 2 : 62.352 cm2

Given:

Perimeter of equilateral triangle = 36 cm

Concepts used:

Perimeter of equilateral triangle = 3 × side

Area of equilateral triangle = √3/4 × (side)

Calculation:

Perimeter of equilateral triangle = 3 × side

⇒ 3 × side = 36 cm

⇒ Side = 36/3 cm

⇒ Side = 12 cm

Area of equilateral triangle = √3/4 × (side)

⇒ √3/4 × (12)2 cm2

⇒ √3/4 × 144 cm

⇒ (1.732 × 144)/4 cm2

⇒ 62.352 cm2

∴ The area of equilateral triangle is 62.352 cm2.

293.

Numerical value of the perimeter and the area of a circle are equal. What will be the numerical value of the radius of the circle?1. 02 unit2. 04 unit3. 1 / 2 unit4. π unit

Answer» Correct Answer - Option 1 : 02 unit

Given:

Perimeter of circle = Area of circle

Formula used:

Perimeter of circle = 2πr

Area of circle = πr2

Calculation:

2πr = πr2

⇒ 2r = r2

⇒ 2 = r

∴ The radius of circle is 2 unit

294.

Four times the area of the curved surface of a cylinder is equal to 6 times the sum of the areas of its bases. If its height is 12 cm. then its volumes, in cm3 is1. 48π2. 384π3. 546π4. 768π

Answer» Correct Answer - Option 4 : 768π

Given:

4 (A) = 6 (B)

h = 12 cm

Where,

A = Area of CSA of cylinder

B = Sum of the area of its base

h = height of cylinder

Formula used:

Curved surface area of cylinder = 2π × radius × height

Volume of cylinder = π × (radius)2 × height

Area of base = π × (radius)2

Calculation:

4 (A) = 6 (B)

⇒4 (2 π r h) = 6 (2 π r2)

⇒ 8 h = 12 r

⇒ 8 × 12 = 12 r (given h= 12 cm)

⇒ r = 8 cm

Volume of cylinder = π × 82 × 12

= 768 π 

295.

If diameter of a circle is 7 cm, then what will be the 4 times of the area of the circle?1. 154 cm22. 164 cm23. 168 cm24. 198 cm2

Answer» Correct Answer - Option 1 : 154 cm2

Given:

Diameter = 7 cm

Formula used:

Area of the circle = π r2

Calculation:

Area of the circle = π r2

⇒ (22/7) × (7/2) × (7/2)

⇒ 38.5 cm2

∴ 4 times area of circle = 38.5 × 4 = 154 cm2

296.

The diameter of sphere is 21 cm. Then, find the volume of the sphere.1. 3851 cm32. 4481 cm33. 4851 cm34. 2426 cm3

Answer» Correct Answer - Option 3 : 4851 cm3

Given:

The diameter of sphere is 21 cm

Formula used:

Volume of sphere = (4/3)π r3

Radius (r) = diameter/2

Calculation:

Diameter of sphere = 21 cm

Radius (r) = diameter/2

⇒ (21/2) cm

Volume of sphere = (4/3)π r3

⇒ (4/3) × (22/7) × (21/2) × (21/2) × (21/2)

⇒ 4851 cm3

∴ The volume of Sphere is 4851 cm3.

297.

If the diagonal of a cube is 10√3 cm, find the volume of cube. 1. 900 cm32. 1000 cm33. 1100 cm34. 800 cm3

Answer» Correct Answer - Option 2 : 1000 cm3

Given:

Diagonal of cube = 10√3 cm

Formula used:

Diagonal of cube = √3x

Volume of cube = x3

Where, x = Side of cube

Calculation:

According to the question,

√3x = 10√3

⇒ x = 10 cm

Volume of cube = (10)3 cm3

⇒ 1000 cm3

∴ The volume of cube is 1000 cm3

298.

Diameter of a sphere is 21 cm. What will be the volume of the sphere?1. 4867 cm32. 4942 cm33. 4851 cm34. 4951 cm3

Answer» Correct Answer - Option 3 : 4851 cm3

Given:

Diameter of sphere = 21 cm

⇒ Radius (r) = 21/2 cm

Formula used:

The volume of the sphere = (4/3) π r3, where r will be the radius of the sphere

Calculation:

The volume of the sphere = (4/3) π r3

⇒ (4/3) × (22/7) × (21/2) × (21/2) × (21/2)

⇒ 4851 cm3

∴ The volume of the sphere is 4851 cm3

299.

Find the number of lead balls, each with a diameter of 3 cm, that can be made from a sphere of diameter 21 cm.1. 1962. 2163. 2564. 343

Answer» Correct Answer - Option 4 : 343

Given:

Diameter of sphere = 21 cm

Diameter of lead balls = 3 cm

Formula used:

Volume of sphere = 4/3(πr3)

Calculation:

Let ‘n’ be the number of lead balls that can be made from a sphere

Radius of sphere = 21/2 cm

Radius of lead balls = 3/2 cm

⇒ Volume of sphere = 4/3(πr3)

⇒ Volume of sphere = 4/3[π(21/2)3]

⇒ Volume of lead ball = 4/3[π(3/2)3]

According to the question,

Volume of sphere = n × Volume of lead balls

⇒ 4/3[π(21/2)3] = n × 4/3[π(3/2)3]

⇒ (21/2)3 = n × (3/2)3

⇒ 9261/8 = n × 27/8

⇒ n = 9261/27

⇒ n = 343 

The number of lead balls, each with a diameter of 3 cm, that can be made from a sphere of diameter 21 cm is 343.

300.

The bigness or the smallness of the pull of the earth on 3-D bodies represents their ______.1. Weight-measure2. Time-measure3. Distance-measure4. Volume-measure

Answer» Correct Answer - Option 1 : Weight-measure

Measurement: It is defined as the description of data in terms of numbers. More precisely, measurement is defined as the assignment of numerals to objects or events according to rules.

3-dimensional body: ​A body that has length, breadth, and height. For example, glass, ball, and cylinder are three-dimensional objects as it has length, breadth, and height.

  • Weigh is the measurement that signifies how heavy a body is. To be more specific, it also signifies the bigness or the smallness of the pull of the earth on 3-D bodies.
  • A 3-dimensional body occupies space and hence, its volume can also be measured.
  • Distance is measured between two points.

Hence, we conclude that the above statement is about weight-measure.