InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 351. |
एक वर्ग और आयत की परिधि बराबर है। यदि उनके क्षेत्रफल `A m^(2)` और `B m`^(2)` हो तो सही कथन क्या है?A. `AltB`B. `AleB`C. `AgtB`D. `AgeB` |
|
Answer» Correct Answer - C In this condition always square area is greater than any other quadilateral so option c is correct |
|
| 352. |
दो पहियों की त्रिज्या का अनुपात `3:4` है। परिधि का अनुपात ज्ञात करें?A. `4:3`B. `3:4`C. `2:2`D. `3:2` |
|
Answer» Correct Answer - B परिधि का अनुपात `=3:4` |
|
| 353. |
किसी चतुर्भुज की भुजाओं का अनुपात `3:4:5:6` तथा परिमान 72 सेमी. है। सबसे लम्बी भुजा ज्ञात करें?A. 24B. 27C. 30D. 36 |
|
Answer» Correct Answer - A माना कि भुजाएं `=3x,4x,5x` and `6x` `implies 18xto72, xto4` `implies` सबसे बड़ी भुजा `=6xx4=24cm` |
|
| 354. |
किसी समबाहु त्रिभुज की ऊंचाई 15 cm है। त्रिभुज का क्षेत्रफल ज्ञात करें?A. `50sqrt(3)` sq. cmB. `70sqrt(3)` sq. cmC. `75 sqrt(3)` sq. cmD. `150sqrt(3)` sq. cm |
|
Answer» Correct Answer - C height of equilateral `Delta` `=15cm` `(sqrt(3))/2` (side) `=15` side `=(15xx2)/(sqrt(3))` area `=(sqrt(3))/4("side")^(2)` `=(sqrt(3))/4((15xx2)/(sqrt(3)))^(2)=(sqrt(3))/4xx(225xx4)/3` `=75sqrt(3)cm^(2)` |
|
| 355. |
किसी सम चतुर्भुज के विकर्ण 8 cm तथा 65 cm है। उसके बराबर भुजा वाले वर्ग का क्षेत्रफल ज्ञात करें?A. 25B. 55C. 64D. 36 |
|
Answer» Correct Answer - A In a rhombus `4a^(2)=d_(1)^(2)+d_(2)^(2)` `4a^(2)+8^(2)+6^(2)` `a^(2)=100/4=25` `implies` Side of square `=5cm` `:.` Area of `25cm^(2)` |
|
| 356. |
A triangle and a parallelogram are constructed on the same base such that their area is the same. If the altitude of the parallelogram is 100 cm, then find the altitude of the triangle.1. 200√2 cm2. 220 cm3. 200 cm4. 240 cm |
|
Answer» Correct Answer - Option 3 : 200 cm GIVEN: the altitude of the parallelogram = 100 cm FORMULA USED: Area of the parallelogram = (Base × Altitude) sq. unit and Area of triangle = (1/2 × Base × Altitude) sq. unit CALCULATION: Let the altitude of the triangle be L1 cm and the triangle and a parallelogram are constructed on the same base ⇒ Area of the parallelogram = Area of triangle ⇒ (Base × Altitude) = (1/2 × Base × Altitude) ⇒ 100 = 1/2 × L1 ⇒ L1 = 200 cm ∴ The altitude of the triangle is 200 cm |
|
| 357. |
किसी 40 सेमी. लम्बी तथा 15 सेमी. चौड़ी आयताकार चादर के कोनों से 4 सेमी. की चादर काट ली जाती है तथा बचे भाग को मोड़कर एक खुला बक्सा बना लिया जाता है। बक्से का आयतन ज्ञात करें?A. `896 cm^(3)`B. `986 cm^(3)`C. `600 cm^(3)`D. `916 cm^(3)` |
|
Answer» Correct Answer - A Volume of the box `=lxxbxxh` `=(40-8)xx(15-8)xx4` `=32xx7xx4` `=32xx7xx4` `=896cm^(3)` |
|
| 358. |
7 cm भुजा वाले घन से कांटे गये बड़े से बड़े गोले का आयतन ज्ञात करें?A. 718.66B. 543.72C. 481.34D. 179.67 |
|
Answer» Correct Answer - D गोले का व्यास `=` घन की भुजा `=7cm` Radius `r=7/2cm` गोले का आयतन `=4/7pir^(3)` `=4/3xx22/7xx7/2xx7/2=179.67cm^(3)` |
|
| 359. |
किसी घनाभ के सम्मुख पृष्ठ क्षेत्रफल `x,y,z` है। यदि इसका आयतन `v` हो तो `v,x,y,z` के बीच संबंध स्थापित करें?A. `v^(2)=xyz`B. `v^(3)=xyz`C. `v^(2)=x^(3)h^(3)z^(3)`D. `v^(3)=x^(2)y^(2)z^(2)` |
|
Answer» Correct Answer - A माना कि लंबाई, चौड़ाई तथा ऊंचाई क्रमशः `l,b,h` है। `implieslb=x` `bh=y` `lh=z` `implies l^(2)b^(2)h^(2)=xyz` `(lbh)^(2)=xyz` `implies v^(2)=xyz` |
|
| 360. |
15 सेमी. भुजा वाले घन में से 3 सेमी. भुजा वाले कितने घन बनाये जा सकते हैं?A. `25`B. `027`C. `125`D. `144` |
|
Answer» Correct Answer - C Number of cubes `=((15)^(3))/((3)^(3))=125` |
|
| 361. |
एक 8000 लीटर क्षमता वाले टैंक की बाहरी विमाऐं `3.3 m xx 2.6 m xx1.1m` है तथा दीवारें 5cm मोटी हैं। आधार की मोटाई ज्ञात करें?A. `1m`B. `10cm`C. `1 dm`D. `90 cm` |
|
Answer» Correct Answer - B Volume of the cistern `=(330-10)xx(260-10)xx` `(110-x)=8000xx1000` (where `x=` thickness of botton) `x=110-100=10cm` |
|
| 362. |
`60 cmxx 9 cmm xx 12 cm` विमा वाले घनाभ से कम से कम कुल कितने घन बनाये जा सकते हैं?A. `6`B. `9`C. `24`D. `30` |
|
Answer» Correct Answer - C घनों की संख्या न्यूनतम होगी यदि घनों की भुजा अधिकतम होगी। `:.` अधिकतम संभावित लंबाई `=HCF` of `6,9,12=3` घन का आयतन `=3xx3xx3cm^(3)` `:.` घनों की संख्या `=(6xx9xx12)/(3xx3xx3)=24` |
|
| 363. |
लकड़ी के एक डिब्बे की माप 20 सेमी. `xx` 12 सेमी. `xx` 10 सेमी. है। लकड़ी की मोटाई 1 सेमी. है। इस बक्से को बनाने में प्रयोग हुयी लकड़ी का आयतन है।A. `960`B. `519`C. `2400`D. `1120` |
|
Answer» Correct Answer - A डिब्बे की बाहरी विमाएं `=l=20cm, b=12cm` `h=10cm` डिब्बे का बाह्य का आयतन `=20xx12xx10=2400cm^(3)` लकड़ी की मोटाई `=1cm` आंतरिक लंबाई `=20-2=18cm` आंतरिक चौड़ाई `=12-2=10cm` आंतरिक ऊंचाई `=10-2=8cm` डिब्बे का आंतरिक आयतन `=18xx10xx8=1440cm^(3)` लकड़ी का आयतन `=(2400-1400)cm^(3)=960cm^(3)` |
|
| 364. |
A hollow cylindrical pipe of internal radius 3 cm and 7 mm thick is 10 meter long. Find the volume of the pipe?1. 14440 cm32. 14740 cm33. 13740 cm34. 18740 cm3 |
|
Answer» Correct Answer - Option 2 : 14740 cm3 Given: Length of pipe(h) = 10 meter = 1000 cm Internal radius(r) = 3 cm External radius(R) = Internal radius + thickness = 3 cm + 0.7 cm = 3.7 cm Formula used: Volume of hollow pipe = π(R2 – r2)h a2 – b2 = (a + b)(a – b) Calculation: ∵ Volume of hollow pipe = π(R2 – r2)h ⇒ (22/7) × 1000 × [(3.7)2 – (3)2] ⇒ (22/7) × 1000 × (13.69 – 9) ⇒ (22/7) × 1000 × (4.69) ⇒ 14740 cm3 |
|
| 365. |
Numerical value of the area of circle and circumference of the circle is same. What is the diameter of this circle?1. 4 units2. 2 units3. 1 units4. 0.5 units |
|
Answer» Correct Answer - Option 1 : 4 units Given: Circumference of the circle = Area of the circle Formula Used: Circumference of the circle = 2πr Area of the circle = πr2 Diameter = Radius × 2 Calculation: According to question 2πr = πr2 ⇒ 2 = r ⇒ Radius = 2 units Diameter = Radius × 2 ⇒ 2 × 2 = 4 units ∴ Diameter is 4 units The correct option is 1 i.e. 4 units |
|
| 366. |
What is the area of a rectangle whose length is 21 cm and diagonal is 29 cm long?1. 240 cm22. 420 cm23. 440 cm24. 220 cm2 |
|
Answer» Correct Answer - Option 2 : 420 cm2 Given: Diagonal = 29 cm Length = 21 cm Formula Used: Area of rectangle = Length × Breadth Calculation: Using Pythagoras theorem (Hypotenuse)2 = (Base)2 + (Perpendicular)2 ⇒ (29)2 = (21)2 + (Perpendicular)2 ⇒ 841 – 441 = (Perpendicular)2 ⇒ √400 = Perpendicular ⇒ 20 cm = Perpendicular ⇒ 20 cm = Breadth Area of rectangle = Length × Breadth ⇒ 21 cm × 20 cm ⇒ 420 cm2 ∴ The area of the rectangle is 420 cm2 The correct option is 2 i.e. 420 cm2 |
|
| 367. |
A well of radius 2.8 m is dug up to a depth of 15 m. The earth which is taken out is used to make a platform which is 7 m wide around the well in a circular shape. Find the height of the platform?1. 1.33 m2. 2.7 m3. 4.3 m4. 0.9 m |
|
Answer» Correct Answer - Option 1 : 1.33 m Given: Radius of well = 2.8 m Height of well = 15 m Width of platform = 7 m Concept: The volume of the platform will be equal to the volume of the earth taken out, i.e. to the volume of cylindrical shaped well. The platform is also is in the shape of cylinder whose inner radius is the radius of the well and the outer radius will be the sum of radius of well and the thickness of the platform. Formula used: Volume of cylinder = πr2h Volume of Hollow cylinder = π(R2 – r2)h Where, ‘R’ is the outer radius and ‘r’ is inner radius. Calculation: Let, the height of the platform = h ‘r’ = radius of well ‘R’ = radius (Platform + well) = 7 + 2.8 = 9.8 m ∵ Volume of the well = Volume of the Cylindrical platform ∴ πr2h = π(R2 – r2)h ⇒ 2.8 × 2.8 × 15 = [(9.8)2 – (2.8)2] × h ⇒ 117.6 = (96.04 – 7.84) × h ⇒ 117.6 = 88.2 × h ⇒ h = 117.6/88.2 ⇒ h = 4/3 = 1.33m |
|
| 368. |
वर्ग ABCD का विकर्ण AC की लम्बाई 5.2 cm है। वर्ग का क्षेत्रफल ज्ञात करें?A. 15.12 sq. cmB. 13.52 sq. cmC. 12.62 sq. cmD. 10.00 sq. cm |
|
Answer» Correct Answer - B वर्ग की भुजा `(“Diagonal”)/(sqrt(2))` वर्ग का क्षेत्रफल `=((“Diagonal”)^(2))/2=((5.2)^(2))/2=(5.2xx5.2)/2` `=2.6xx5.2=13.52cm^(2)` |
|
| 369. |
If the length of a certain rectangle is decreased by 4 cm and the width is increased by 3 cm, a square with the same area as the original rectangle would result. Find the perimeter of the original rectangle. 1. 20 cm2. 30 cm3. 50 cm4. 60 cm |
|
Answer» Correct Answer - Option 3 : 50 cm GIVEN: length of a rectangle is decreased by 4 cm and the width is increased by 3 cm FORMULA USED: Area of rectangle = (l × b) sq. unit and Area of square = (side)2 sq. unit Perimeter of rectangle = 2(l + b) units CALCULATION: Let the length and breadth of the rectangle be x and y ⇒ Area of rectangle = (l × b) sq. unit ⇒ xy cm2 ⇒ new length and breadth = (x - 4) and (y + 3) ⇒ (x - 4) = (y + 3) ⇒ x - y = 7 .....(1) ⇒ Area of square = (x - 4) × (y + 3) ⇒ According to question ⇒ Area of rectangle = Area of square ⇒ xy = (x - 4) × (y + 3) ⇒ 3x - 4y = 12 .....(2) ⇒ On solving these equation ⇒ x = 16 and y = 9 ⇒ Perimeter of rectangle = 2(l + b) units ⇒ 2(16 + 9) ⇒ 2 × 25 ⇒ 50 cm ∴ perimeter of the original rectangle is 50 cm |
|
| 370. |
A right circular cylinder is partially filled with water. A solid metallic spherical ball is dropped in the cylinder. The radius of the sphere is 2.1 cm and the radius of the cylinder is 7 cm. Find the rise in water level after the bass is dropped?1. 0.292 cm2. 0.232 cm3. 0.286 cm4. 0.252 cm |
|
Answer» Correct Answer - Option 4 : 0.252 cm Given: Radius of spherical ball(R) = 2.1 cm Radius of cylinder(r) = 7 cm Concept: The volume of the ball will the volume of the water displaced. So, the volume of the cylindrical part with rise in water level will be equal to the volume of the ball. Formula used: Volume of sphere = (4/3)πr3 Volume of cylinder = πr2h Calculation: Let, the rise in water level = h cm ∵ Volume of sphere = Volume of cylinder ⇒ (4/3)πR3 = πr2h ⇒ (4/3) × 2.1 × 2.1 × 2.1 = 7 × 7 × h ⇒ h = (4 × 2.1 × 2.1 × 2.1)/(3 × 7 × 7) ⇒ h = 0.252 cm |
|
| 371. |
Area of a square is 8 times the area of a rectangle. Find the ratio of diagonal of the square to the diagonal of the rectangle, if the length of the rectangle is half the length of the side of the square.1. 1 : 2 2. 3√2 : 5√33. 4√2 : √5 4. √3 : √5 |
|
Answer» Correct Answer - Option 3 : 4√2 : √5 Given : Area of the square is 8 times the area of the rectangle Length of rectangle is half the length of the side of the square Formula Used : Area of the square = side2 Area of the rectangle = length × breadth Calculations : Let the side of the square be ‘s’ Let the length of the rectangle be ‘l’ and breadth be ‘b’ According to the question S2 = 8 × (I × b) (2l)2 = 8 × (l × b) (l = (s/2) or s = 2 l) 4 l2 = 8 × l × b ⇒ b = l/2 Now, Diagonal of the square = √2 × side = √2s = 2√2 l (s = 2l) Diagonal of the rectangle = √[(l)2 + (b)2] = √[(l)2 + (l/2)2] ⇒ √[(5/4)(l)2] ⇒ (l/2)√5 Diagonal of square : Diagonal of rectangle = 2√2l : (l/2)√5 ⇒ 4√2 : √5 ∴ The ratio of the diagonals is 4√2 : √5 |
|
| 372. |
Volume of the cube is increased by 72.8%. Find the length of new cube if the length of the original cube was 10 cm.1. 112. 123. 144. 16 |
|
Answer» Correct Answer - Option 2 : 12 Given : The volume of cube increased by 72.8% The original length of the cube was 10 cm Formula Used : The volume of cube = a3 (where a is the side of the cube) Calculations : Side of the original cube = 10 cm The volume of the original cube = 103 ⇒ 1000 cm3 The volume of the cube is increased by 72.8% Volume of new cube = 1000 + 72.8% of 1000 ⇒ 1000 + 728 = 1728 cm3 Let the length of new cube ‘x’ 1728 = (x)3 ⇒ x = 12 cm ∴ The length of the side of the new cube is 12 cm
|
|
| 373. |
A cyclist cycles around a square park with speed 3 m/s on 1st side, 4m/s on second side, 5m/s on 3rd side and 6m/s on 4th side. If he completes one round in 57 seconds, find the area of the square field?1. 3844 m22. 3600 m23. 2500 m24. 3364 m2 |
|
Answer» Correct Answer - Option 2 : 3600 m2 Given: Speed on 1st side = 3 m/s Speed on 2nd side = 4 m/s Speed on 3rd side = 5m/s Speed on 4th side = 6m/s Total time taken to complete 1 round = 57 seconds Concept: Since the distance covered on each side is same, so the time taken to cover the distance of each side is added which is the overall time to complete 1 round. So, by using the time distance speed formula, calculate the distance of each side and then calculate the area of the square. Formula used: Distance/Speed = time Area of square = side × Side Calculation: Let, side of the square be ‘D’ ∴ D/3 + D/4 + D/5 + D/6 = 57 ⇒ (20D + 15D + 12D + 10D)/60 = 57 ⇒ 57D = 57 × 60 ⇒ D = 60 m Area of the square of side 60 m ⇒ 60 × 60 = 3600 m2 ∴ Area of the square is 3600 m2 |
|
| 374. |
The internal length and breadth of a cuboidal store are 16 m and 13 m respectively and its height is 11 m. There is another cubical store whose internal length, breadth and height are 8 m each. How many total cubical boxes each of side one metre can be placed in these two stores to a height of 7 metres?1. 22882. 28003. 19044. 1968 |
|
Answer» Correct Answer - Option 3 : 1904 Concept Volume of cuboid = length × breadth × height Volume of cube = side3 Number of cubical boxes that can fit inside cuboidal/cubical store = Volume of cuboidal/cubical store ÷ Volume of one cubical box Calculation Length and breadth of cuboidal store = 16 m and 13 m respectively Boxes are to be placed to a height of 7 m so, height = 7 m Volume of cuboidal store = 16 × 13 × 7 = 1456 m3 Similarly, Length and breadth of cubical box = 8 m each and height = 7 m Volume of cubical store = 8 × 8 × 7 = 448 m3 Volume cubical box of side 1 m = 1 × 1 × 1 = 1 m3 Number of boxes to be placed = (1456 ÷ 1) + (448 ÷ 1) = 1904 So, the number of boxes = 1904. |
|
| 375. |
A hemisphere is put above an inverted cone of height 9 cm and radius 6 cm such that base of hemisphere and cone matches. Find the volume of shape?1. 120π cm32. 360π cm33. 240π cm34. 252π cm3 |
|
Answer» Correct Answer - Option 4 : 252π cm3 Given: Radius of cone = 6 cm Radius of hemisphere = 6 cm Height of cone = 9 cm Formula: Volume of cone = (1 / 3) × πr2h Volume of hemisphere = (2 / 3) × πr3 Calculation: Total volume of shape = Volume of cone + volume of hemisphere ⇒ (1 / 3) × π × 62 × 9 + (2 / 3) × π × 63 ⇒ (1 / 3) × π × 36 × (9 + 12) ⇒ 12π × 21 ⇒ 252π cm3 |
|
| 376. |
8 equal cube is cut out form a cuboid of dimension 4 cm × 2 cm × 1 cm. What is the ratio of the total surface area of the cuboid to that of all 8 cubes?1. 7 : 182. 5 : 113. 9 : 134. 7 : 12 |
|
Answer» Correct Answer - Option 4 : 7 : 12 Given: Dimension of cuboid = 4 cm × 2 cm × 1 cm Formula: Volume of cuboid = lbh Total surface are of cuboid = 2 (lb + bh + hl) Volume of cube = a3 Total surface area of cube = 6a2 Calculation: Volume of cuboid = 4 × 2 × 1 = 8 cm3 Volume of each cube = 8 / 8 = 1 cm3 Side of each cube = ∛1 = 1 cm Total surface area of cuboid = 2 (4 × 2 + 2 × 1 + 1 × 4) ⇒ 2 × (8 + 2 + 4) ⇒ 2 × 14 ⇒ 28 cm2 Total surface area of all 8 cubes = 8 × 6 × 12 ⇒ 48 cm2 ∴ Required ratio = 28 : 48 = 7 : 12 |
|
| 377. |
A right circular cone of whose height and radius are equal is put above a right circular cylinder of height 7 cm and radius 9 cm such that base of cone and cylinder matches perfectly. Find the total volume of shape.1. 1000π cm22. 490π cm23. 640π cm24. 810π cm3 |
|
Answer» Correct Answer - Option 4 : 810π cm3 Given: Radius of the cone r = 9 cm Height of cone h = 9 cm Radius of cylinder R = 9 cm Height of cylinder H = 7 cm Formula: Volume of cone = (1 / 3) × πr2h Volume of cone = πR2H Calculation: Volume of shape = (1 / 3) × πr2h + πR2H ⇒ (1 / 3) × π × 9 × 9 × 9 + π × 9 × 9 × 7 ⇒ 81π × (3 + 7) ⇒ 81π × 10 ⇒ 810π |
|
| 378. |
Given below are two quantities named I and II. Based on the given information, you have to determine the relation between the two quantities. You should use the given data and your knowledge of Mathematics to choose among the possible answers.Quantity I: If the diameter of the sphere is 42 cm then find the volume of the sphere?Quantity II: If the side of the cube is 27 cm then find the volume of the cube?1. Quantity I > Quantity II2. Quantity I ≥ Quantity II 3. Quantity II > Quantity I4. Quantity II ≥ Quantity I5. Quantity I = Quantity II or Relation cannot be established |
|
Answer» Correct Answer - Option 1 : Quantity I > Quantity II Given: Diameter of sphere = 42 cm Then, Radius = 21 Formula: Volume of sphere = 4/3 × π × R3 Calculation: We know that – Volume of sphere = 4/3 × π × R3 …….. (1) Now, Put all the given values in equation (1) then we get Volume of sphere = 4/3 × 22/7 × (42/2)3 ⇒ 4/3 × 22/7 × 21 × 21 × 21 ⇒ 4 × 22 × 21 × 21 ⇒ 38808 ∴ The Volume of a sphere will be 38808 cm3 Quantity II: Given: Side of cube = 27 cm Formula: Volume of cube = (side)3 Calculation: We know that – Volume of cube = (side)3 …….. (1) Now, Put the given value in equation (1) then we get Volume of cube = (27)3 ⇒ 27 × 27 × 27 ⇒ 19683 ∴ The Volume of a cube will be 19683 cm3 Comparison of both the result: ∴ Quantity I > Quantity II |
|
| 379. |
If the ratio of the area of two square is 144 : 1, then, find the ratio of their perimeter.1. 4 : 12. 12 : 13. 1 : 34. 3 : 4 |
|
Answer» Correct Answer - Option 2 : 12 : 1 Given: Ratio of area of two square = 144 : 1 Formula used: Area of square = (side)2 Ratio of perimeter = 4 × side Calculation: (Area1)2/(Area2)2= 144/1 ⇒ (side1)2/ (side2)2=144/1 ⇒ Side1/Side2 = 12/1 Ratio of perimeter = (4 × side1)/(4 × side2) ⇒ (4 × 12)/(4 × 1) ⇒ 12 : 1 ∴ The ratio of their perimeter is 12 : 1 |
|
| 380. |
The circumference of a circle of radius 7 cm is:1. 22 cm2. 49 cm3. 54 cm4. 44 cm |
|
Answer» Correct Answer - Option 4 : 44 cm Given: The circumference of a circle of radius 7 cm Concept used: Circumference of circle = 2πr Calculation: Circumference of circle = 2πr Circumference of circle = 2 × 22/7 × 7 Circumference of circle = 44 cm |
|
| 381. |
If diameter of a circle is 21 cm, then what will be the circumference of circle?1. 264 cm2. 128 cm3. 66 cm4. 132 cm |
|
Answer» Correct Answer - Option 3 : 66 cm Concept: Circumference of a circle = 2πr, where 'r' is radius. Solution: Given: Diametre = 21 cm So, Radius = 21/2 Using above formula, we get, 2 × 22/7 × 21/2 = 66 cm Hence, we conclude that the circumference is 66 cm. |
|
| 382. |
If the circumference of circle is 13.2 cm, find the radius of the circle.1. 1.4 cm2. 2.1 cm3. 3.4 cm4. 5.1 cm |
|
Answer» Correct Answer - Option 2 : 2.1 cm Given: Circumference of the circle = 13.2 cm Formula used: Circumference of circle = 2πr Where r represents radius of the circle Calculation: 13.2 = 2(π) r ⇒ r = (13.2 × 7)/ (2 × 22) ⇒ r = 2.1 cm ∴ The radius of circle is 2.1 cm |
|
| 383. |
Find the area of circular garden, which is fencing by a wire of 44 cm.1. 145 cm22. 154 cm23. 134 cm24. 156 cm2 |
|
Answer» Correct Answer - Option 2 : 154 cm2 Given: Circumference of garden = 44 cm Formula used: Area of circle = πr2 Circumference of circle = 2πr Calculation: ⇒ 2πr = 44 ⇒ r = (44 × 7)/ (2 × 22) ⇒ r = 7 cm Area = πr2 ⇒ (22/7) × 7 × 7 ⇒ 154 cm2 ∴ The area of circle is 154 cm2 |
|
| 384. |
The area of three adjacent face of a cuboid is 156 cm2, 143 cm2 and 132 cm2. Find the volume of the cuboid?1. 1786 cm32. 1753 cm33. 1716 cm34. 1798 cm3 |
|
Answer» Correct Answer - Option 3 : 1716 cm3 Given: Length × Breadth = 156 cm2 Breath × Height = 143 cm2 Height × Length = 132 cm2 Formula used: Volume of a cuboid = length × Breadth × Height ⇒ Volume of a cuboid = √(l2 × b2 × h2) = √[(l × b) × (b × h) × (h × l)] Calculation: Volume of the Cuboid = √(156 × 143 × 132) = √[(13 × 12) × (12 × 11) × (11 × 13)] = √[(13)2 × (12)2 × (11)2] = 13 × 12 × 11 = 1716 cm3 |
|
| 385. |
A water tank is in the shape of a cuboid. The edges of the tank are in the ratio 7 ∶ 5 ∶ 3. The surface area of the tank is 142 m2, find how many liters of water the tank can hold?1. 105 kL2. 110 kL3. 102 kL4. 108 kL |
|
Answer» Correct Answer - Option 1 : 105 kL Given: Ratio of sides = 7 ∶ 5 ∶ 3 Total surface area of the tank = 142 m2 Formula used: Total surface area of the cuboid = 2(lb + bh + hl) Volume of cuboid = l × b × h 1m3 = 1000 liters Calculation: Let the sides of the tank = 7x, 5x and 3x ∵ TSA of the tank = 2(lb + bh + hl) ⇒ 142 = 2[(7x × 5x) + (5x × 3x) + (3x × 7x)] ⇒ 142 = 2(35x2 + 15x2 + 21x2) ⇒ 142 = 2(71x2) ⇒ 71 = 71x2 ⇒ x = √1 = 1 ------(Ignore the negative value) ∴ Sides of the tank are; 7x = 7 × 1 = 7m 5x = 5 × 1 = 5m 3x = 3 × 1 = 3m ∴ Volume of the tank in m3 = (7 × 5 × 3) m3 = 105 m3 ∵ 1 m3 = 1000 liters ∴ 105 m3 = (1000 × 105) = 105000 liters = 105 kiloliters ∴ Tank can hold 105 kiloliters of water. |
|
| 386. |
The area of a rhombus is 216 cm2 and one of the diagonals is 18 cm. Find the perimeter of the rhombus.1. 15 cm2. 24 cm3. 60 cm4. 48 cm |
|
Answer» Correct Answer - Option 3 : 60 cm Given: Area of the rhombus is 216 cm2 Length of a diagonal = 18 cm Concept used: The two diagonals bisect each other at 90° in a rhombus. Formula used: Area of rhombus = (1/2) × Product of the two diagonals Perimeter = 4 × (Side of the rhombus) Calculations: Let the second diagonal of the rhombus be x and the side of the rhombus be a Area of rhombus = (1/2) × 18 × x ⇒ 216 = (1/2) × 18x ⇒ 18x = 432 ⇒ x = 24 cm If the two diagonals of rhombus ABCD intersect at O then, ⇒ AO2 + BO2 = AB2 ⇒ (18/2)2 + (24/2)2 = a2 ⇒ 81 + 144 = a2 ⇒ a2 = 225 ⇒ a = 15 cm Perimeter of the rhombus = 4a ⇒ 4 × 15 ⇒ 60 cm ∴ The perimeter of the rhombus is 60 cm. |
|
| 387. |
The perimeter of a rhombus is 100 cm and one of the two diagonals is 14 cm. Find the difference between the two diagonals.1. 48 cm2. 25 cm3. 62 cm4. 34 cm |
|
Answer» Correct Answer - Option 4 : 34 cm Given: Perimeter of a rhombus is 100 cm Length of diagonal = 14 cm Concept used: The two diagonals bisect each other at 90° in a rhombus. Formula used: Perimeter = 4 × (Side of the rhombus) Calculations: Let the side of rhombus be x and the diagonals be a and b Perimeter = 4x ⇒ 100 = 4x ⇒ x = 25 cm If the two diagonals of rhombus ABCD intersect at O then, ⇒ AO2 + BO2 = AB2 ⇒ (14/2)2 + (b/2)2 = 252 ⇒ 49 + (b2/4) = 625 ⇒ (b2/4) = 576 ⇒ b2 = 2304 ⇒ b = 48 cm Difference between the diagonals = b – a ⇒ 48 – 14 ⇒ 34 cm ∴ The difference between the two diagonals is 34 cm |
|
| 388. |
The length of diagonals of a rhombus are in the ratio 8 : 15 and area are 240 cm2 then find the side of the rhombus.1. 17 cm2. 20 cm3. 18 cm4. 21 cm |
|
Answer» Correct Answer - Option 1 : 17 cm Given: Area of the Rhombus = 240 cm2 Formula used: Area of Rhombus = (d1 × d2)/2 Area of Rhombus = Side × Altitude d12 + d22 = 4 × s2 Here, d1, d2, and s are diagonals and side of rhombus respectively. Concept used: All sides of a rhombus are equal and diagonals bisect each other at a right angle. Calculation: Let the diagonals be 8x and 15x Area of Rhombus = (d1 × d2)/2 ⇒ 240 = (8x × 15x)/2 ⇒ x = 2 Then our diagonals are 16 cm and 30 cm Now, d12 + d22 = 4 × s2 ⇒ 162 + 302 = 4 × s2 ⇒ s2 = 289 ⇒ s = 17 cm ∴ The side of the rhombus is 17 cm |
|
| 389. |
If the area of a rhombus is 720 cm2 and the length of one of the two diagonals is 80 cm then find the length of each side of the rhombus.1. 82 cm2. 41 cm3. 18 cm4. 40 cm |
|
Answer» Correct Answer - Option 2 : 41 cm Given: Area of a rhombus = 720 cm2 Length of first diagonal = 80 cm Concept used: The two diagonals bisect each other at 90° in a rhombus. Formula used: Area of rhombus = (1/2) × Product of the two diagonals Calculations: Let the length of second diagonal be x Area of rhombus = (1/2) × 80 × x ⇒ 720 = (1/2) × 80x ⇒ x = 18 cm If the two diagonals of rhombus ABCD intersect at O then, ⇒ AO2 + BO2 = AB2 ⇒ (80/2)2 + (18/2)2 = AB2 ⇒ AB2 = 402 + 92 ⇒ AB2 = 1600 + 81 ⇒ AB2 = 1681 ⇒ AB = 41 cm ∴ The length of each side of a rhombus is 41 cm. |
|
| 390. |
The length of side of a rhombus is 17 cm and one of its diagonals is 16 cm. Find the area of rhombus.1. 120 cm22. 240 cm23. 360 cm24. 480 cm2 |
|
Answer» Correct Answer - Option 2 : 240 cm2 Given: Length of side = 17 cm Length of a diagonal = 16 cm Concept used: The two diagonals bisect each other at 90° in a rhombus. Formula used: Area of rhombus = (1/2) × Product of the two diagonals Calculations: Let AC = 16 cm and BD = x cm If the two diagonals of rhombus ABCD intersect at O then, ⇒ AO2 + BO2 = AB2 ⇒ (16/2)2 + (x/2)2 = 172 ⇒ 64 + (x2/4) = 289 ⇒ (x2/4) = 225 ⇒ x2 = 900 ⇒ x = 30 cm Area of rhombus = (1/2) × 16 × 30 ⇒ 8 × 30 ⇒ 240 cm2 ∴ The area of the rhombus is 240 cm2 |
|
| 391. |
The areas of three consecutive faces of a cuboid are 9 cm2, 25 cm2 and 36 cm2, then the volume (in cm3) of the cuboid is1. 1002. 30003. 904. 60 |
|
Answer» Correct Answer - Option 3 : 90 Given: Area of three consecutive faces of cuboid = 9 cm2, 25 cm2 and 36 cm2 Formula used: Volume of cuboid = √area1 × √area2 × √area3 Calculation: Volume of cuboid = √9 × √25 × √36 cm3 ⇒ 3 × 5 × 6 cm3 ⇒ 90 cm3 ∴ The volume of cuboid is 90 cm3 |
|
| 392. |
If the areas of three consecutive faces of a cuboid are 12 cm2, 20 cm2, and 60 cm2, then the volume (in cm3) of the cuboid is1. 120 cm32. 60 cm33. 150 cm34. 180 cm3 |
|
Answer» Correct Answer - Option 1 : 120 cm3 Given: The areas of three consecutive faces of a cuboid are 12 cm2, 20 cm2, and 60 cm2. Formula used: The volume of cuboid = l × b × h Where l → length b → breadth h → height Calculations: Let the length, breadth, and height of the cuboid be x, y, and z respectively. Then xy = 12 cm2, yz = 20 cm2, and zx = 60 cm2 By multiplying these three we'll get xy × yz × zx = 12 × 20 × 60 ⇒ x2y2z2 = 14400 ⇒ (xyz)2 = 14400 ⇒ xyz = 120 and –120, (Rejecting the negative term as volume cannot be negative) Volume of cuboid = l × b × h = xyz Thus xyz = 120 cm3 ∴ The volume of the cuboid is 120 cm3. |
|
| 393. |
The areas of three consecutive faces of a cuboid are 9 cm2, 25 cm2 and 36 cm2, then the volume (in cm2) of 1. 602. 903. 30004. 100 |
|
Answer» Correct Answer - Option 2 : 90 Given: Areas of three consecutive faces of a cuboid = 9 cm2, 25 cm2 and 36 cm2 Formula used: Volume = √Area1 × √Area2 × √Area3 Calculation: Volume = √9 × √25 × √36 cm2 ⇒ 3 × 5 × 6 cm2 ⇒ 90 cm2 ∴ The required volume of cuboid is 90 cm2 |
|
| 394. |
A sphere of radius 3 cm is dropped into a cylindrical vessel partly filled with water. The radius of the vessel is 6 cm. If the sphere is submerged completely. Then the surface of the water is raised by.1. 1 cm2. 2 cm3. 3 cm4. 4 cm |
|
Answer» Correct Answer - Option 1 : 1 cm Given: Radius of sphere = 3 cm Radius of cylinder = 6 cm Concept: Volume of cylinder = πr2H Volume of sphere = (4/3)πR3 Where, r → Radius of the cylinder H → Height of the cylinder R → Radius of the sphere When the sphere is submerged then, The volume of sphere = Volume of cylinder Calculation: The volume of sphere = Volume of cylinder ⇒ (4/3) × π × (3)3 = π × (6)2 × H ⇒ H = (36/36) ⇒ H = 1 cm ⇒ The surface of the water is raised = 1 cm ∴ The surface of the water is raised by 1cm |
|
| 395. |
35 सेमी. व्यास वाले बेलनाकार टैंक पानी से पूरा भरा है। यदि 11 लीटर पानी को निकाल लिया जायें, तब पानी का गिरा स्तर ज्ञात करें?A. `10 1/2 cm`B. `12 6/7` cmC. `14` cmD. `11 3/7` cm |
|
Answer» Correct Answer - D टैंक की त्रिज्या `r=35/2cm` माना आरंभिक ऊंचाई `=H` अंततः ऊंचाई `=h` According to question `pi(35/2)^(2)xxH-pi(35/2)^(2)h=1100cm^(3)` `pi(35/2)^(2)xx(H-h)=11000` `H-h=(11000xx2xx2xx7)/(35xx35xx22)=80/7` `=11 3/7cm` |
|
| 396. |
किसी लोहे के घन के तीन किनारें क्रमशः 6 सेमी., 8 सेमी. और 10 सेमी. हैं। उनको पिघलाकर एक घन बनाया गया है। तैयार किए गए उस नए घन का किनारा बताइए।A. 12 सेमीB. 14 सेमीC. 16 सेमीD. 18 सेमी |
|
Answer» Correct Answer - A Volume of bigger cube `=6^(3)+8^(3)+10^(3)` `216+512+1000=1728` Side of bigger cube `=root(3)(1728)` `=12cm` |
|
| 397. |
दो घनों के आयतनों का अनुपात `27:1` है। उनकी भुजाओं का अनुपात ज्ञात करें?A. `3:1`B. `27:1`C. `1:3`D. `1:27` |
|
Answer» Correct Answer - A दिया गया है कि घनों के आयतन का अनुपात `=27:1` `(3/1)^(3)=27/1` `(a_(1))/(a_(2))=root(3)(27/1)` `=3/1=3:1` |
|
| 398. |
22 मी. `xx` 20 मी.` आयताकार छत से एक बेलनाकार पात्र जिसका व्यास 2 मी. तथा ऊंचाई 3.5 मी. है में पानी गिरता है। यदि पात्र पूरा भरा हुआ हो तब होई हुई वर्षा (सेमी. में) में ज्ञात करें?A. 2B. 2.5C. 3D. 4.5 |
|
Answer» Correct Answer - B पात्र का आयतन `=` छत का आयतन `pixxr^(2)xxh=22xx20xx x` जहां `x` सेमी. में हुई वर्षा है। `implies22/7xx(100xx100xx350)/(22xx20xx100xx100)=x` `implies x=2.5cm` |
|
| 399. |
2.2 सेंटीमीटर भुजा वाले चांदी के एक घन को पिघलाकर उससे एक तार तैयार किया गया जिसका व्यास 1 मिलीमीटर है तार की अनुमानित लम्बाई कितनी होगी?A. `1.35 m`B. `13.5 m`C. `135 m`D. `1350 m` |
|
Answer» Correct Answer - B Volume of cube `=` vol. of wire `[a^(3)=pir^(2)h]` `=1/10cm` `r=1/(10xx2)=1/20` `2.2xx2.2xx2.2` `=22/7xx1/20xx1/20xxh` `h=13.5m` |
|
| 400. |
120 cm लंबे रोलर का व्यास 84 cm है। जमीन को समतल करने में रोलर के पूरे 500 चक्कर लगते है। रू0 1.50 प्रति वर्ग मी. पर जमीन को समतल करने की लागत क्या होगी?A. Rs. 5750B. Rs. 6000C. Rs. 3760D. Rs. 2376 |
|
Answer» Correct Answer - D According to the question व्यास `=84cm` त्रिज्या `=42cm=0.42cm` ऊंचाई `=120cm=1.2m` `:.` बेलन की परिधिे `=2pirh` `=(2xx22xx0.42xx1.2xx1.2xx500)/7` `Rs. 2376` |
|