 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | If `a ,b ,c`are in G.P., then prove that `loga^n ,logb^n ,logc^n`are in A.P. | 
| Answer» Here, `a,b and c` are in G.P. `:. b^2 = ac` Taking log both sides, `log(b^2) = log(ac)` `=>2logb = loga+logc` `=>n*2logb = nloga+nlogc` `=>2logb^n = loga^n+logc^n` `:. loga^n,logb^n and logc^n` are in A.P. | |
| 2. | If `a ,b ,c ,d`are in A.P. and `x , y , z`are in G.P., then show that `x^(b-c)doty^(c-a)dotz^(a-b)=1.` | 
| Answer» Let `D` is the common difference in the given A.P. Then, `b-a = D, c-b = D, d-c = D` `:. b-c = -D, c-a = 2D,a-b = -D` As, `x,y and z` are in G.P. `:. y^2 = zx` Now, `x^(b-c)*y^(c-a)*z^(a-b) = x^(-D)*y^(2D)*z^(-D)` `= (1/(zx))^D*(y^2)^D` `=(y^2/(zx))^D` `=((zx)/(zx))^D...[ `As ` y^2 = zx]` `=1^D = 1` `:. x^(b-c)*y^(c-a)*z^(a-b) = 1` | |
| 3. | If `a ,b ,c`are three distinct real numbers in G.P. and `a+b+c=x b ,`then prove that either x < -1 or x > 3 | 
| Answer» `a+b+c = xb` `=>xb-b = a+c` `=>b(x-1) = a+c` `=>x-1 = (a+c)/b` As, `a,b,c` are in G.P, `:. b^2 = ac => b = sqrt(ac).``:. x-1 = (a+c)/(sqrt(ac))` `=>x -1 = sqrt(a/c)+sqrt(c/a)` Now, we know, `m+1/m gt 2` or `m+1/m lt -2.` `:. sqrt(a/c)+sqrt(c/a) gt 2 or sqrt(a/c)+sqrt(c/a) lt -2.` `:. x - 1 gt 2 or x-1 lt -2` `=>x gt 3 or x lt -1.` | |
| 4. | If `a ,b ,c ,d`are in G.P. prove that:`(a^2+b^2),(b^2+c^2),(c^2+d^2)`are inG.P.`(a^2-b^2),(b^2-c^2),(c^2-d^2)`are inG.P.`1/(a^2+b^2),1/(b^2+c^2),1/(c^2+d^2)`are inG.P.`(a^2+b^2+c^2),(a b+b c+c d),(b^2+c^2+d^2)` | 
| Answer» Let `a` is the first term and `r` is the common ratio. Then, `b = ar, c= ar^2,d = ar^3` `a^2+b^2 = a^2+a^2r^2 = a^2(1+r^2)` `b^2+c^2 = a^2r^2+a^2r^4 = a^2r^2(1+r^2)` `c^2+d^2 = a^2r^4+a^2r^6 = a^2r^4(1+r^2)` So, `a^2+b^2,b^2+c^2 and c^2+d^2` are in G.P. with first term `a^2(1+r^2)` and common ratio `r^2`. Now, `a^2-b^2 = a^2-a^2r^2 = a^2(1-r^2)` `b^2-c^2 = a^2r^2-a^2r^4 = a^2r^2(1-r^2)` `c^2-d^2 = a^2r^4-a^2r^6 = a^2r^4(1-r^2)` So, `a^2-b^2,b^2-c^2 and c^2-d^2` are in G.P. with first term `a^2(1-r^2)` and common ratio `r^2`. Now, `1/(a^2+b^2) = 1/(a^2+a^2r^2) = 1/(a^2(1+r^2))` `1/(b^2+c^2) = 1/(a^2r^2+a^2r^4) = 1/(a^2r^2(1+r^2))` `1/(c^2+d^2) = 1/(a^2r^4+a^2r^6) = 1/(a^2r^4(1+r^2))` So, `1/(a^2+b^2),1/(b^2+c^2) and 1/(c^2+d^2)` are in G.P. with first term `1/(a^2(1+r^2))` and common ratio `1/r^2`. Now, `a^2+b^2+c^2 = a^2+a^2r^2+a^2r^4 = a^2(1+r^2+r^4)` `ab+bc+cd = a(ar)+ar(ar^2)+ar^2(ar^3) = a^2r(1+r^2+r^4)` `b^2+c^2+d^2 = a^2r^2 + a^2r^4+a^2r^6 = a^2r^2(1+r^2+r^4)` So, `a^2+b^2+c^2,ab+bc+cd , b^2+c^2+d^2` are in G.P. with first term `a^2(1+r^2+r^4)` and common ratio `r`. | |
| 5. | Let `x`be the arithmetic mean and `y ,z`be tow geometric means between any two positive numbers. Then, prove that`(y^3+z^3)/(x y z)=2.` | 
| Answer» Let `a` and `b` are two positive numbers. Then, `x = (a+b)/2` `y^2 = az and z^2 = yb` `=>y^3 = ayz and z^3 = byz` Now, `(y^3+z^3)/(xyz) = (ayz+byz)/(((a+b)/2)yz)` `=2((a+b)yz)/((a+b)yz) =2` `:. (y^3+z^3)/(xyz) = 2.` | |
| 6. | If the A.M. of two positive numbers `aa n db(a > b)`is twice their geometric mean. Prove that : `a : b=(2+sqrt(3)):(2-sqrt(3))dot` | 
| Answer» It is given that A.M. is twice of the G.M. `:. (a+b)/2 = 2sqrt(ab)` `=>(a+b)/(2sqrt(ab)) = 2/1` Using componendo and dividendo, `=>(a+b+2sqrt(ab))/(a+b-2sqrt(ab)) = (3+1)/(3-1)` `=>(sqrta+sqrtb)^2/(sqrta-sqrtb)^2 = 3/1` `=>(sqrta+sqrtb)/(sqrta-sqrtb) = sqrt3/1` Using componendo and dividendo again, `=>(sqrta+sqrtb+sqrta-sqrtb)/(sqrta+sqrtb-sqrta+sqrtb) = (sqrt3+1)/(sqrt3-1)` `=>(2sqrta)/(2sqrtb) = (sqrt3+1)/(sqrt3-1)` `=> sqrta/sqrtb = (sqrt3+1)/(sqrt3-1)` `=>a/b = (sqrt3+1)^2/(sqrt3-1)^2` `=>a/b = (3+1+2sqrt3)/(3+1-2sqrt3)` `=>a/b = (2+sqrt3)/(2-sqrt3)` `:. a:b = 2+sqrt3 : 2-sqrt3` | |
| 7. | In a finite G.P. the product of the terms equidistant from thebeginning and the end is always same and equal to the product of first andlast term. | 
| Answer» Let `a, ar,ar^2,ar^3...ar^(n-1)`is the G.P. with first term as `a` and common ratio `r`. Then, `k` th term from the beginning ` = ar^(k-1)` Now, `k` th term from the end will be `n-k+1` th term from the beginning. So, `n-k+1` th term from the beginning `= ar^(n-k+1-1) = ar^(n-k)` Now, product of `k` th term from the beginning and end `= ar^(k-1)*ar^(n-k)` `= a*ar^(k-1+n-k)` `=a*ar^(n-1)` `=` Product of first and last term of the G.P. Hence, in a finite G.P. the product of the terms equidistant from the beginning and the end is always same and equal to the product of first and last term. | |
| 8. | Sum the series : `x(x+y)+x^2(x^2+y^2)+x^3(x^3+y^3+ ton`terms. | 
| Answer» `x(x+y)+x^2(x^2+y^2)+....n` terms `=>x^2+xy+x^4+x^2y^2+x^6+x^3y^3+...n` terms `=>(x^2+x^4+x^6+...n ` terms `)` +`(xy+(xy)^2+(xy)^3+...n` terms`)` Now, we have `2` G.P. with first term and common ratio `x^2` and `xy`. Sum of a G.P. can be given as, `S_n = (a(r^n-1))/(r-1)` `:. S_n = (x^2(x^(2n) - 1))/(x^2-1)+(xy(xy^n - 1))/(xy-1)` | |
| 9. | The `(m+n)t ha n d(m-n)t h`terms fa G.P. ae `pa n dq`respectively. Show that the mth and nth terms are `sqrt(p q)a n dp(q/p)^(m//2n)`respectively. | 
| Answer» Let `a` is the first term of the G.P. is `a` and the common ratio is `r`. Then, it is given that , `ar^(m+n-1) = p->(1)` `ar^(m-n-1) = q->(2)` Multiplying (1) and (2), `a^2r^(m+n-1+m-n-1) = pq` `=>a^2r^(2(m-1)) = pq` `=>ar^(m-1) = sqrt(pq)` `:. m` th term of the given G.P. is `sqrt(pq).` Now, dividing (1) by (2), `=>(ar^(m+n-1) )/(ar^(m-n-1) ) = p/q` `=>r^(2n) = p/q` `=>r = (p/q)^(1/(2n))` Now, putting value of `r` in (1), `=>a((p/q)^(1/(2n)))^(m+n-1) = p` `=>a = p/((p/q)^((m+n-1)/(2n)))` `=>ar^(n-1) = p/((p/q)^((m+n-1)/(2n)))**((p/q)^(1/(2n)))^(n-1)` `=>ar^(n-1) = p(p/q)^(((n-1)/(2n) - (m+n-1)/(2n)))` `=>ar^(n-1) = p(p/q)^((-m)/(2n))` `=>ar^(n-1) = p(q/p)^((m)/(2n))` `:. n` th term of the given G.P. is ` p(q/p)^((m)/(2n)).` | |
| 10. | In a G.P. of positive terms if any terms is equal to the sum of nexttow terms, find the common ratio of the G.P. | 
| Answer» Let the G.P. is, `a, ar,ar^2,ar^3...` Here, `a` is the first term and `r` is the common ratio. Then, it is given that , `ar+ar^2 = a` `=>r+r^2 = 1` `=>r^2+r-1 = 0` `=> r = (-1+-(sqrt(1-4(-1)(1))))/2 =+- (sqrt5-1)/2` Here, we will take only positive value as it is given that G.P. is of positive terms. So, common ratio of this G.P. is `(sqrt5-1)/2.` | |
| 11. | The sum of first two terms of an infinite G.P. is 5 and each term isthree times the sum of the succeeding terms. Find the G.P. | 
| Answer» Let the G.P. is `a, ar,ar^2...oo` Here, `a` is the first term and `r` is the common ratio. Then, `a+ar = 5` Also, `T_n = 3(T_(n+1)+T_(n+2)+...oo)` `=>ar^(n-1) = 3(ar^n+ar^(n+1)+...oo)` `=>ar^(n-1) =3ar^n(1+r+r^2...oo)` `=>1 = 3r(1/(1-r))` `=>1-r = 3r` `=>4r = 1` `=> r = 1/4` `:. a +a(1/4) = 5` `=>5/4a = 5` `=> a= 4` So, G.P. is `4,1,1/4,1/16...oo.` | |
| 12. | Find the least value of `n`for which the sum `1+3+3^2+ ton`terms is greater than 7000. | 
| Answer» `1+3+3^2+...->n` terms Here, first term, `a = 1` and common ratio, `r = 3`. `:. S_n = (1(3^n-1))/(3-1)` `:. (3^n-1))/(3-1) gt 7000` `=>3^n -1 gt 14000` `=>3^n gt 14001` Now, `3^8 = 6561` `3^9 = 19683` So, minimum value of `n` for which `3^n` is greater than `14001` is `9`. `:. n = 9.` | |