

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
401. |
Evaluate:`int((e/x)^x+(x/e)^x)1nx dxdot` |
Answer» Let `((x)/(e))^(x)=t` or `(((x)/(e))^(x) "In"(x)/(e)+x*((x)/(e))^(x-1)*(1)/(e))dx=dt` or `((x)/(e))^(x)("In"(x)/(e)+1)dx=dt` or `((x)/(e))^(x) "In"xdx=dt` So, ` I=int((1)/(t^(2))+1)dt= -(1)/(t)+t+C` `=((x)/(e))^(x)-((e)/(x))^(x)+C` |
|
402. |
Evaluate `int sin(logx)dx`. |
Answer» Let `log x =t.` Then, `x=e^(t)impliesdx=e^(t)dt` ` :. I =int sin(logx)dx` `=int sin t e^(t) dt` `=(e^(t))/(2)(sint-cost)+C` Hence, `int sin(logx)dx=(x)/(2) [sin(logx)-cos(logx)]+C` |
|
403. |
Evaluate `intsqrt(1+3x-x^2)dx`. |
Answer» `intsqrt(1+3x-x^2)dx` `=intsqrt(1+(9)/(4)-(x^(2)-2x((3)/(2))+(9)/(4)))dx` `=int sqrt(((sqrt(13))/(2))^(2)-(x-(3)/(2))^(2))dx` `=(x-(3)/(2))/(2) sqrt(1+3x-x^(2))+(13)/(4xx2)"sin"^(-1)((x-(3)/(2))/((sqrt(13))/(2)))+C` `=(2x-3)/(4)sqrt(1+3x-x^(2))+(13)/(8)"sin"^(-1)((2x-3)/(sqrt(13)))+C` |
|
404. |
Evaluate:`int(sinx)/(sin3x)dxdot` |
Answer» `I=int (sinx)/(sin3x)dx=int(sinx)/(3sinx-4sin^(3)x)dx` `=int(1)/(3-4sin^(2)x)dx` `=int(sec^(2)x)/(3sec^(2)x-4tan^(2)x)dx` ` " " [ "Dividing " N^(r) and D^(r) " by " cos^(2)x]` Putting `tanx=t and sec^(2)xdx=dt,` we get `I=int(dt)/(3(1+t^(2))-4t^(2))=int(dt)/(3-t^(2))=int(1)/((sqrt(3))^(2)-t^(2))dt` `=(1)/(2sqrt(3))log|(sqrt(3)+t)/(sqrt(3)-t)|+C=(1)/(2sqrt(3))log|(sqrt(3)+tanx)/(sqrt(3)-tanx)|+C` |
|
405. |
Evaluate:`int1/(sqrt(3x+4)-sqrt(3x+1))dxdot` |
Answer» `int(1)/(sqrt(3x+4)-sqrt(3x+1))dx` `=int(sqrt((3x+4))+sqrt((3x+1)))/((sqrt((3x+4))+sqrt((3x+1)))(sqrt((3x+4))-sqrt((3x+1))))dx` `=int(sqrt((3x+4))+sqrt((3x+1)))/((3x+4)-(3x+1))dx` `=(1)/(3)sqrt(3x+4)+sqrt(3x+1)dx` `=(1)/(3)sqrt(3x+4)dx+(1)/(3)sqrt(3x+1)dx` `=(1)/(3){((3x+4)^(3//2))/(3xx(3)/(2))}+(1)/(3){((3x+1)^(3//2))/(3xx(3)/(2))}+C` `=(2)/(27){(3x+4)^(3//2)+(3x+1)^(3//2)}+C` |
|
406. |
Evaluate:`intsin^(-1)sqrt(x/(a+x))dxdot` |
Answer» `I=int sin^(-1)sqrt((x)/(a+x))dx` Let `x=a tan^(2) theta " or " dx=2a tan theta sec^(2)theta d theta` `:. intsin^(-1)sqrt(sin^(2)theta)2a sec^(2)theta tan theta d theta` `=2a int underset(I)(underbrace(theta)) underset(II)(underbrace(sec^(2) theta tan theta)) d theta` `=2a[theta(tan^(2)theta)/(2)-int(tan^(2)theta)/(2) d theta]` `=a[ theta tan^(2)theta-int(sec^(2) theta-1) d theta]` `=a(theta tan^(2) theta-tan theta + theta]+c, " where " theta ="tan"^(-1)sqrt((x)/(a))` |
|
407. |
The value of `inta^sqrt(x)/sqrt(x)` dx is equal toA. `a^sqrt(x)/sqrt(x)+C`B. `(2a^sqrt(x))/(lna)+C`C. `2a^sqrt(x).ln a+C`D. `2a^sqrt(x)+C` |
Answer» Correct Answer - B | |
408. |
Evaluate `int(secx+tanx)^(2)dx` |
Answer» Correct Answer - `2(secx+tanx)-x+C` `int(secx+tanx)^(2)dx=int(sec^(2)x+tan^(2)x+2secxtanx)dx` `=int(2sec^(2)x-1+2secxtanx)dx` `=2(secx+tanx)-x+C` |
|
409. |
Evaluate:`inta^(m x)b^(n x)dx` |
Answer» Correct Answer - `(a^(m)b^(n))^(x)/(log(a^(m)b^(n)))+C` `I=inta^(mx)b^(nx)dx` `=int(a^(m)b^(n))^(x)dx` `=(a^(m)b^(n))^(x)/(log(a^(m)b^(n)))+C` |
|
410. |
If`int1/(x+x^5)dx=f(x)+c ,t h e ne v a l u a t eint(x^4)/(x+x^5)dxdot` |
Answer» Correct Answer - `logx-f(x)+C` `int(x^(4)dx)/(x+x^(5))=int((x^(4)+1)dx)/(x+x^(5))-intdx/(x+x^(5))` `=int((x^(4)+1)dx)/(x(1+x^(4)))-intdx/(x+x^(5))` `=intdx/x-intdx/(x+x^(5))` `=logx-f(x)+C` |
|
411. |
Evaluate:`int(secx)/(secx+tanx)dxdot` |
Answer» `int(secx)/(sec x +tan x)dx=int(secx(secx-tanx))/((secx+tanx)(secx-tanx))dx` `=int(sec^(2)x-secxtanx)/(sec^(2)x-tan^(2)x)dx` `=int sec^(2)xdx-intsecx tanx dx` `=tanx - secx +C` |
|
412. |
Evaluate `int(tanx)/(secx+tanx)dx` |
Answer» Correct Answer - `secx-tanx+x+C` `int(tan)/(secx+tanx)dx=int(tanx(secx-tanx))/((secx+tanx)(secx-tanx))dx` `=int(tanx(secx-tanx))/(sec^(2)x-tan^(2)x)dx` `=int(secxtanx-tan^(2)x)dx` `=int(secxtanxdx-int(sec^(2)x-1)dx` `=int(secxtanxdx-intsec^(2)xdx+int1dx` `=secx-tanx+x+C` |
|
413. |
The integral `int(sec^2x)/((secx+tanx)^(9/2))dx`equals (for some arbitrary constant `K)dot``-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K``1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K``-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K``1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`A. `-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`B. `(1)/((secx+tanx)^(1//11)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`C. `-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`D. `(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K` |
Answer» Correct Answer - C `I=int(sec^(2)x)/((secx+tanx)^(9//2))dx` Let ` sec x +tanx=t` ` or sec x -tan x=1//t` Now, `(secx tanx+sec^(2)x)dx =dt` `or secx(secx+tanx)dx=dt` ` or secx dx=(dt)/(t),(1)/(2)(t+(1)/(t))=sec x` ` :. I=(1)/(2)int ((t+(1)/(t)))/(t^(9//2))(dt)/(t)` `=(1)/(2)int(t^(-9//2)+t^(-13//2))dt` `=(1)/(2)[(t^(-9//2+1))/(-(9)/(2)+1)+(t^(-13//2+1))/(-(13)/(2)+1)]+K` `=(1)/(2)[(t^(-7//2))/(-(7)/(2))+(t^(-11//2))/(-(11)/(2))]+K` `= -(1)/(7) t^(-7//2)-(1)/(11)t^(-11//2)+K` `= -(1)/(7) (1)/(t^(7//2))-(1)/(11)(1)/(t^(11//2))+K` `= -(1)/(t^(11//2))((1)/(11)+(t^(2))/(7))+K` `= -(1)/((secx+tan x)^(11//2)){(1)/(11)+(1)/(7)(sec x+tanx)^(2)}+K` |
|
414. |
`int{1+2tanx(tanx+secx)}^(1//2)dx` is equal toA. `"ln"|secx(secx-tanx)|+C`B. `"ln"|"cosec "x(sec x+tanx)|+C`C. `"ln"|secx(secx+tanx)|+C`D. `-"ln"|cosx(secx-tanx)|+C` |
Answer» Correct Answer - CD | |