Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0`, then x = ?A. `(1)/sqrt(3)`B. `-(1)/sqrt(3)`C. `-sqrt(3)`D. None of these

Answer» Correct Answer - A
52.

Solve the following equation: `sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x`

Answer» `sin^(-1) x + sin^(-1) (1-x) = cos^(-1)x `
`rArr " "sin[xsqrt(1-(1-x)^(2)) +(1-x)sqrt(1-x^(2))]= sin ^(-1)sqrt(1-x^(2))`
`rArr xsqrt(2x-x^(2)) + sqrt(1-x)- xsqrt(1-x^(2)) = sqrt(1-x^(2))`
`rArr " "xsqrt(2x-x^(2)) + xsqrt(1-x^(2)) = 0`
`rArr" "x[sqrt(2x-x^(2)) -sqrt(1-x^(2))]=0`
`rArr x = 0 or sqrt(2x-x^(2))-sqrt(1-x^(2))=0` Now `sqrt(2x-x^(2))-sqrt(1-x^(2)) = 0`
`rArr" "sqrt(2x -x^(2)) = sqrt(1-x^(2))`
`rArr" "2x -x^(2) = 1- x^(2)`
`rArr " "2x =1`
`rArr " " x=1//2`
` therefore " "x=0 or x = 1//2`
53.

`sin^(- 1)(- 1/2)`

Answer» `sin^(-1)""(-(1)/(2))=-sin^(-1)""((1)/(2))`
`= - sin^(-1)""(sin""(pi)/(6))=-(pi)/(6)`
54.

If `sin ^(-1) x + sin ^(-1) y = (pi)/(6)`, then `cos^(-1) x + cos ^(-1) y =?`A. `(pi)/(6)`B. `(5pi)/(6)`C. `(pi)/(3)`D. `(2pi)/(3)`

Answer» Correct Answer - B
55.

`sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?`A. `-sqrt(3)/(2)`B. `-(1)/(2)`C. `(1)/(2)`D. `sqrt(3)/(2)`

Answer» Correct Answer - C
56.

If `sin^(- 1)(x)+sin^(- 1)(2x)=pi/3` then `x=`A. `-(1)/(2)`B. `(1)/(2)`C. `pmsqrt((3)/(28))`D. None of these

Answer» Correct Answer - C
57.

`sin(2tan^(-1) .(4)/(5))= ?`A. `(40)/(41)`B. `(9)/(41)`C. `(16)/(25)`D. None of these

Answer» Correct Answer - A
58.

solve`:sin^-1x+sin^-1 2x=pi/3`

Answer» `sin^(-1)x + sin^(-1)2 x = (pi)/(3)`
`rArr " "sin^(1)x + sin^(1)2x = sin ^(1).(sqrt(3))/(2) sin^(-1)2x = sin^(1).sqrt(3)/(2) -sin^(-1)x`
`" "=sin^(1)[(sqrt(3))/(2) sqrt(1-x^(2) )-xsqrt(1-((sqrt(3))/(2))^(2))]`
`rArr" "2x = sqrt(3)/(2)sqrt(1-x^(2))-(x)/(2)`
`rArr" "(5x)/(2) =(sqrt(3))/(2) sqrt(1-x^(2))`
`" "5x = sqrt(3) sqrt(1-x^(2))`
`25x^(2) = 3(1-x^(2))=3-3x^(2)`
`rArr " "28x^(2) =3`
`rArr " "x^(2) =(3)/(28)`
` rArr" "x = pm (sqrt(3))/(2sqrt(7))`
but gives equation is not satisfied by `x= - sqrt(3)/(2sqrt(7))`
Therefore `x=sqrt(3)/(2sqrt(7))`
59.

Solve the equations.`tan^(-1)(1-x)/(1+x)=1/2tan^(-1)x ,(x >0)`

Answer» `tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x, (x gt0)`
`tan^(-1)1-tan^(-1)x=(1)/(2)tan^(-1)x`
`implies (pi)/(4)=(1)/(2)tan^(-1)x+tan^(-1)x`
`implies(3)/(2)tan^(-1)x=(pi)/(4)`
`impliestan^(-1)x=(pi)/(4)`
`implies tan^(-1)=(pi)/(6)`
`implies x=tan""(pi)/(6)=(1)/(sqrt(3))`
60.

Prove that:`2sin^(-1)3/5=tan^(-1)(24)/7`

Answer» LHS=`2 sin^(-1)""(3)/(5)=2tan^(-1)""((3)/(5))/(sqrt(1-((3)/(5))^(2)))`
`( :. sin^(-1)x=tan^(-1)"(x)/(sqrt(1-x^(2))))`
`=2tan^(-1)""(3)/(4)=tan^(-1)""(2xx(3)/(4))/(1-((3)/(4))^(2))`
`=tan^(-1)""(3//2)/(7//16)=tan^(-1)""((3)/(2)xx(16)/(7))`
`=tan^(-1)""((24)/(7))`=RHS. Hence Proved.
61.

If ` tan ^(-1) 2x + tan ^(-1) 3 xx = (pi)/(4)`, then x = ?A. 1B. -1C. `-(1)/(6)`D. `(1)/(6)`

Answer» Correct Answer - D
62.

Solve the equations.`2tan^(-1)(cosx)=tan^(-1)(2cose c x)`

Answer» `2tan^(-1)""(cosx)=tan^(-1)(2 " cosec " x)`
`implies tan^(-2)((2 cosx)/(1-cos^(2)x))=tan^(-2)(2 " cosec " x)`
`implies (2 cos x)/(sin^(2)x)=(2)/(sinx)`
`implies cot x=1 impliesx=(pi)/(4)`
63.

`tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1`

Answer» `tan^(-1)""(1)/(sqrt(x^(2)-1)) " " Letx=cosec theta implies theta =cosec^(-1) x `
`=tan^(-1)""(1)/(sqrt("cosec"^(2)theta-1))=tan^(-1)((1)/(cot theta ))`
`=tan^(-1)(tan theta)=theta=cosec^(-1)x`
64.

Prove that: `tan^(-1)2/(11)+tan^(-1)7/(24)=tan^(-1)1/2`

Answer» `LHS=tan^(-1)""(2)/(11)+tan^(-1)""(7)/(24)`
`=tan^(-1)""((2)/(11)+(7)/(24))/(1-(2)/(11)xx(7)/(24))`
`tan^(-1)""((48+77)/(264))/((264-14)/(264))=tan^(-1)""(125)/(250)`
`tan^(-1)""(1)/(2)=` RHS Hence Proved.
65.

Solution of `tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2)` is:

Answer» Correct Answer - A
66.

Express each of thefollowing in the simplest form:`tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi

Answer» `tan^(-1)""(sqrt((1-cosx)/(1+cos x)))`
`=tan^(-1)(sqrt((2sin^(2)""(x)/(2))/(2 cos^(2)""(x)/(2))))=tan^(-1)((sin""(x)/(2))/(cos""(x)/(2)))`
`=tan^(-1)(tan"(x)/(2))=(x)/(2)`
67.

Write the following function in the simplest form: `tan^(-1)(sqrt(1+x^2)-1)/x , x!=0`

Answer» `tan^(-1)""(sqrt(1+c^(2))-1)/(x) " " Let x=tan theta implies tan^(-1)x=theta`
`=tan^(-1)""(sqrt(1+tan^(2))-1)/(tan theta)`
`tan^(-1)((sec theta-1)/(tan theta))=tan^(-1)(((1)/(cos theta)-1)/((sin theta)/(cos theta)))`
`=tan^(-1)((1-cos theta)/(sin theta))=tan^(-1)((2 sin^(2)""(theta)/(2))/(2 sin ""(theta)/(2) cos ""(theta)/(2)))`
`tan^(-1)(tan""(theta)/(2))=(1)/(2) theta=(1)/(2) tan^(-1)x`
68.

`tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x`

Answer» `tan^(-1)((cosx-sinx)/(cosx+sinx))`
`=tan^(-1)""(((cosx)/(cosx)-(sinx)/(cosx))/((cosx)/(cosx)+(sinx)/(cosx)))`
`tan^(-1)((1-tanx)/(1+tanx))`
`= tan^(-1){tan((pi)/(4)-x)}=(pi)/(4)-x`
69.

Write the following function in the simplest form: `tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)), a >0;(-a)/(sqrt(3))lt=xlt=a/(sqrt(3))`

Answer» `tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))`
`tan^(-1)((3a^(2)*a tan theta-a^(3)tan^(3)theta)/(a^(3)-3a*a^(2)tan^(2)theta))`
`=tan^(-1)((3 tan theta-tan^(3)theta)/(1-3 tan^(2)theta))" " Let x = a tan theta implies (x)/(a)=tan thetaimplies theta = tan^(-1)""((x)/(a))`
`=tan^(-1)(tan 3 theta)3 theta`
`3 tan^(-1)""(x)/(a)`
70.

For the principal values, evaluate each of the following:`tan^(-1){2cos(2s in^(-1)1/2)}``"cot"[sin^(-1){cos(tan^(-1)1)}]`

Answer» `tan^(-1)[2 cos ( 2 sin^(-1)""(1)/(2))]`
`=tan^(-1)[2 cos(2 sin^(-1)sin""(pi)/(6))]`
`=tan^(-1)[2 cos (2*(pi)/(6))]`
`=tan^(-1)(2*(1)/(2))=tan^(-1)(1)`
`=tan^(-1)(tan""(pi)/(4))=(pi)/(4)`
71.

Prove that:`tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]`

Answer» Let `sqrt(x)=tan thetaimpliestan^(2)theta`
`:. RHS=(1)/(2) cos^(-1)""((1-x)/(1+x)), " " x in [0,1]`
`=(1)/(2) cos^(-1)""((1-tan^(2) theta)/(1+tan^(2)theta))`
`=(1)/(2)cos^(-1)(cos2theta)=(1)/(2)(2theta)`
`=theta=tan^(-1)sqrt(x)=` LHS Hence Proved.
72.

Prove that `cos^(-1)4/5cos^(-1)(12)/(13)=cos^(-1)(33)/(65)`

Answer» LHS`=cos^(-1)""(4)/(5)+cos^(-1)""(12)/(13)`
`=cos^(-1)[(4)/(5)xx(12)/(13)-sqrt(1-((4)/(5))^(2))sqrt(1-((12)/(13))^(2))]`
`=cos^(-1)[(48)/(65)-(3)/(5)xx(5)/(13)]=cos^(-1)((48)/(65)-(15)/(65))`
`=cos^(-1)""(33)/(65)=` RHS. Hence Proved.
73.

The value of `cos (2Cos^-1 0.8)` isA. 0.28B. 0.48C. 0.6D. None of these

Answer» Correct Answer - A
74.

Prove that: `sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)`

Answer» RHS=`sin^(-1)"(5)/(13)+cos^(-1)""(3)/(5)`
`=tan^(-1)""((5)/(13))/(sqrt(1-((5)/(13))^(2)))+tan^(-1)""(sqrt(1-((3)/(5))^(2)))/((3)/(5)) " "( :. sin^(-1)x=tan^(-1)""(x)/(sqrt(1-x^(2))) " and " cos^(-1)x=tan^(-1)""(sqrt(1-x^(2)))/(x))`
`=tan^(-1)""(5)/(12)+tan^(-1)""(4)/(3)`
`=tan^(-1)""((5)/(12)+(4)/(3))/(1-(5)/(12)xx(4)/(3))=tan^(-1)""((15+48)/(36))/((36-20)/(36))`
`tan^(-1)""(63)/(16)`= LHS Hence Proved.
75.

If `x_1,x_2, x_3, x_4` are the roots of the equation `x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0`, then `tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4` is equal toA. `alpha`B. `90^(@)- alpha`C. `180^(@)- alpha`D. `270^(@) - alpha`

Answer» Correct Answer - B