Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Find the direciton ratio of the line `(3-x)/(1)=(y-2)/(5) =(2z-3)/1`A. `(1,5,1/2)`B. (-5,5,1)C. `(-1,5,1/2)`D. (1,5,1)

Answer» Correct Answer - C
Given equation of line is `(3-x)/(1)=(y-2)/(5)=(2z-3)/(1)`
`Rightarrow (x-3)/(-1)=(y-2)/(5)=(z-(3)/(@))/((1)/(2))`
`therefore` Direction ratios of line are `(-1,5,(1)/(2))`
52.

The angle between the line `x=1=y=2 =z/1 and x/1=y=-1= z=0` isA. `30^(@)`B. `60^(@)`C. `90^(@)`D. `0^(@)`

Answer» Correct Answer - C
Given lines are `(x-1)/(0)=(y-2)/(0)=z/1`
`and x/1=(y+1)/(0)=z/0`
`"Here", l_1=0, m_(1)=0, n_(1)=1`
`and l_2=1, m_2=0n_(2)=0`
`therefore cos theta =l_(1)l_(2)+m_(1)m_2+n_1n_2=0.1+0.0+0.1=0`
`Rightarrow theta=90^(@)`
53.

A line makes an angle `theta` both with x-axis and y-axis. A possible range of `theta` isA. `[0,pi/4]`B. `[0,pi/2]`C. `[pi/4,pi/2]`D. `[pi/3,pi/6]`

Answer» Correct Answer - C
We know that `cos^(2)alpha=cos^(2)beta+cos^(2)gamma=1`
`Rightarrow cos^(2)theta=cos^(2)theta+cos^(2)gamma=1" "[therefore alpha=beta=theta]`
`Rightarrow 2 cos^(2)theta+cos^(2)gamma=1`
`Rightarrow cos^2gamma=1-2cos^(2)theta`
`Rightarrow cos^2gamma=-cos^(2)theta`
`Rightarrow cos 2theta le theta`
`therefore theta in [pi/4,pi/2]`
54.

The angle between the lines `(x+4)/1=(y-3)/2=(z+2)/3` and `x/3=(y-1)/(-2)=z/1` isA. `sin^(-1)((1)/(7))`B. `cos^(-1)((2)/(7))`C. `cos^(-1)((1)/(7))`D. None of these

Answer» Correct Answer - C
Angle between two lines is given by `cos theta=(1xx3+2xx-2+3xx1)/(sqrt(1^(2)+2^2+3^2)sqrt(3^(2)+(-2)^2+1^2))=2/(sqrt14 sqrt14)`
`therefore theta=cos^(-1) ((1)/(7))`
55.

Find the acute angle between the two straight lines whose direction cosines are given by `l+m+n=0` and `l^2+m^2-n^2=0`A. `(pi)/(3)`B. `pi/4`C. `pi/6`D. `pi-2`

Answer» Correct Answer - A
We know that, angle between two line is `cos theta=(a_(1)a_(2)+b_(1)b_(2)+c_(1)c_(2))/(sqrt(a_(1)^(2)+b_(1)^(2)+c_(1)c^(2)sqrt(a_(2)^(2)+b_(2)^(2)+c_(2)^(2))))`
`therefore l+m+n=0 Rightarrow l=-(m+n)`
`Rightarrow (m+n)^(2)=l^(2)`
`Rightarrow m^(2)+n^(2)+2mn=m^(2)+n^(2)" "[therefore l^(2)=m^(2)+n^(2)]`
`Rightarrow 2mn=0`
when `m=0 Rightarrow l=-n`
Hence, (l,m,n) is (1,0,-1)
when, n=0, then l=-m
Hence, (l,m,n) is (1,0,-1) `therefore cos theta=(1+theta+0)/(sqrt2xxsqrt2)=1/2`
`Rightarrow theta=cos^(-1) ((1)/(2))=pi/3`
56.

Find the angle between the pair of lines ` (x -1 )/(4) = ( y - 3)/(1) = (z) /(8) ` and `(x - 2)/(2) = ( y + 1) /(2) = (z - 4)/(1). `A. `cos^(-1)(14/27)`B. `cos^(-1)(-14/27)`C. `cos^(-1) (2/3)`D. `cos^(-1) (-2/3)`

Answer» Correct Answer - C
57.

The acute angle between the line joining the points (2,1,-3) and (-3,1,7)and a line parallel to `(x-1)/3=y/4=(z+3)/5` through the point (-1,0,4) isA. `cos^(-1)((1)/(sqrt(10)))`B. `cos^(-1)((1)/(5sqrt(10)))`C. `cos^(-1)((7)/(5sqrt(10)))`D. `cos^(-1)((3)/(5sqrt(10)))`

Answer» Correct Answer - C
Direction ratio of the line joining the points (2,1,-3) and (-3,1,7) are `(a_(1),b_1,c_(1))i.e, (-5,0,10)`
Direction ratio of the line parallel to line `(x-1)/(3)=(y)/(4)=(z+3)/(5)"are"(a_(2),b_(2),c_(2))i.e, (3,4,5)`
Angle between two lines is given by
`cos theta=((-5xx3)+(0xx4)+(10xx5))/(sqrt(25+0+100)sqrt(9+16+25))=(35)/(25sqrt10)`
`therefore theta=cos^(-1)((7)/(5sqrt10))`
58.

The acute angle between the lines `(x+4)/-1 = (y-2)/2 = (z-3)/2` and `x/2 = (y-1)/-2 = (z+1)/1` isA. `cos^(-1) (4/9)`B. `cos^(-1)(-4/9)`C. `cos^(-1)(2/9)`D. `cos^(-1)(8/9)`

Answer» Correct Answer - A
59.

The angle between the lines `(x+1)/2 = (y+3)/2 = (z-4)/-1` and `(x-4)/1 = (y+4)/2 = (z+1)/2` isA. `cos^(-1) (1/9)`B. `cos^(-1)(2/9)`C. `cos^(-1)(3/9)`D. `cos^(-1)(4/9)`

Answer» Correct Answer - D
60.

The angle between the lines `(x-1)/1 = (y-1)/1 = (z-1)/2` and `(x-1)/(-sqrt(3)-1) =(y-1)/(sqrt(3)-1) = (z-1)/4` isA. `pi/6`B. `pi/3`C. `pi/4`D. `pi/2`

Answer» Correct Answer - B
61.

The line `(x-2)/3=(y+1)/2=(z-1)/1`intersects the curve `x y=c^(I2),z=0`if `c`is equal toa. `+-1`b. `+-1//3`c. `+-sqrt(5)`d. none of theseA. ` pm 1 `B. ` pm ( 1 ) / ( 3 ) `C. ` pm sqrt 5 `D. None of these

Answer» Correct Answer - C
We have, z = 0 for the point where the line intersects the curve
` therefore (x - 2 ) / (3 ) = ( y + 1 ) / ( 2 ) = ( 0 - 1 ) / ( - 1 ) `
` rArr ( x - 2 ) / ( 3 ) = 1 and ( y +1 )/ ( 2 ) = 1 `
` rArr x = 5 and y = 1 `
Put these values in ` xy = c^ 2 ` , we get
` 5 = c ^ 2 rArr c = pm sqrt 5 `
62.

the line passing through the points ` (3, -2--5),` and `(3, -2,6)`A. `(x+3)/0 = (y-2)/0 =(z-15)/-11`B. `(x+3)/0 = (y-2)/0 = (z-5)/11`C. `(x-3)/0 = (y+2)/0 = (z+5)/-11`D. `(x-3)/0 = (y+2)/0 = (z+5)/11`

Answer» Correct Answer - D
63.

the line passing through the points ` (3, -2--5),` and `(3, -2,6)`A. `(3hati-2hatj - 5hatk) +lambda(-11hatk)`B. `(3hati - 2hatj - 5hatk) + lambda(11hatk)`C. `(3hati - 2hatj - 5hatk) + lambda(-4hatj)`D. `(3hati - 2hatj - 5hatk) + lambda(6hati)`

Answer» Correct Answer - B
64.

Find the vector wuation of the line passing through the points A(3,4, -7) and B (6,-1, 1)A. `(x+3)/-3 = (y+4)/5 = (z-7)/8`B. `(x-3)/-3 = (y-4)/5 = (z+7)/8`C. `(x+3)/3 = (y+4)/-5 = (z-7)/8`D. `(x-3)/3 = (y-4)/-5 = (z+7)/8`

Answer» Correct Answer - D
65.

Find the vector wuation of the line passing through the points A(3,4, -7) and B (6,-1, 1)A. `(6hati -hatj +hatk) + lambda(3hati - 5hatj + 8hatk)`B. `(3hati + 4hatj - 7hatk) + lambda(3hati - 5hatj + 8hatk)`C. `(6hati - hatj +hatk) + lambda(-3hati + 5hatj - 8hatk)`D. `(3hati + 4hatj - 7hatk) + lambda(-3hati + 5hatj - 8hatk)`

Answer» Correct Answer - B
66.

The vector equation of a line passing through the points `(-2,3,4)` and (1,1,2) isA. `(-2hati + 3hatj + 4hatk) + lambda(3hati - 2hatj - 2hatk)`B. `-(2hati + 3hatj + 4hatk) + lambda(3hati - 2hatj + 2hatk)`C. `(-2hati + 3hatj + 4hatk) + lambda(3hati - 2hatj + 2hatk)`D. `(-2hati + 3hatj + 4hatk) + lambda(3hati + 2hatj + 2hatk)`

Answer» Correct Answer - A
67.

The vector equation of a line passing through the points A(4,2,1) and B(2,-1,3) isA. `(-4hati - 2hatj - hatk) + lambda(2hati + 3hatj - 2hatk)`B. `(4hati + 2hatj + hatk) + lambda(-2hati - 3hatj + 2hatk)`C. `(-4hati - 2hatj - hatk) + lambda(2hati +3hatj - 4hatk)`D. `(4hati + 2hatj +hatk) + lambda(-2hati - 3hatj + 4hatk)`

Answer» Correct Answer - B
68.

A line passing through the points A (-2 , -1 , 5) and B ( 1, 3 , -1) ,find the equation of the line in parametric form. Also, write the equation in non - parametric form.A. `vecr xx (3hati + 4hatj - 6hatk) = 14hati + 3hatj + 5hatk`B. `vecr xx (3hati + 4hatj - 6hatk) = 14hati - 3hatj - 5hatk`C. `vecr xx (3hati + 4hatj - 6hatk) = 14hati - 3hatj + 5hatk`D. `vecr xx (3hati + 4hatj - 6hatk) = -14hati + 3hatj - 5hatk`

Answer» Correct Answer - D
69.

The lines `(x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1)` are coplanar, ifA. `k = +-3`B. `k = +-1`C. `k=0, -1`D. `k=0,-3`

Answer» Correct Answer - D
70.

Find the angle between the pair of line: vecr=3hati+2hatu-4hatk+lamds(hati+2hatj+2hatk), vecr=5hati-2hatk+mu(3hati+2hatj+6hatk)`A. `cos^(-1) (21/16)`B. `cos^(-1)(19/21)`C. `cos^(-1)(21/15)`D. `cos^(-1) (15/21)`

Answer» Correct Answer - B
71.

The symmetric equation of lines 3x+2z-5=0 and x+y-2z-3=0 isA. `(x-1)/(5)=(y-4)/(7)=(z-0)/(1)`B. `(x+1)/(5)=(y+4)/(7)=(z-0)/(1)`C. `(x+1)/(-5)=(y+4)/(7)=(z-0)/(1)`D. `(x-1)/(-5)=(y-4)/(7)=(z-0)/(1)`

Answer» Correct Answer - C
Let a,b,c be the direction ratios of required line.
`therefore 3a+2b+c=0`
and a+b-2c=0
`Rightarrow (a)/(-4-1)=(b)/(1+6)=(c)/(3-2)`
`Rightarrow (a)/(-5)=(b)/(7)=(c)/(1)`
In order to find on the required line, we put z=0 in the two given equations to obtain 3x+2y=5 and x+y=3.
On solving these two equations, we get x=-1, y=4
`therefore` Coordintaes of point on required line are (-1,4,0)
Hence, required line is `(x+1)/(-5)=(y-4)/(7)=(z-0)/(1)`
72.

The line `(x+1)/(-10)=(y+3)/(-1)=(z-4)/1 and (x+10)/(-1)=(y+1)/(-3) =(z-1)/(4)` interest at the point.A. (11,-4,5)B. (-11,-4,5)C. (11,4,-5)D. (-11,-4,-5)

Answer» Correct Answer - B
Let `(x+1)/(-10)=(y+3)/(-1)=(z-4)/(1)=lambda_(1)`
`and (x+10)/(-1)=(y+1)/(-3)=(z-1)/(4)=lambda_(2)`
`"Then", (-10lambda_(1)-1-lambda_(2)-3,lambda_(1)+4)`
and `(-lambda_(2)-10,-3lambda_1-1, 4lambda_(2)+1)` are identical.
`-10lambda_(1)-1=-lambda_(2)-10,-lambda,-3=-3lambda_2-1`
and `lambda_(1)+4=4lambda_(2)+1`
`Rightarrow -10lambda_(1)+lambda_(2)=-9-lambda_(1)+3lambda_(2)=2`
`lambda_(1)-4lamda2=-3`
On solving, we get `lambda_(1)=lambda_(2)=1`
Intersection points is `(-10xx1-1, -1-3,1+4)i.e, (-11,-4,5)`
On solving, we get `x=-11, y=-4 and z=5`.
73.

Consider the lines ` L _ 1 : ( x - 1 )/ ( 3 ) = ( y + 2 ) / ( 1 ) = ( z + 1 ) / ( 2 ) ` ` L _ 2 : ( x - 2) / ( 1 ) = ( y + 2 ) / ( 2 ) = ( z - 3 )/ ( 3 ) ` The unit vector perpendicular to both ` L _ 1 and L_ 2 ` isA. ` ( 1 ) / ( sqrt (99)) ( - hati + 7 hatj +7hatk ) `B. ` ( 1 ) / ( 5 sqrt3) ( - hati - 7 hatj + 5 hatk ) `C. ` ( 1 ) / ( 5sqrt 3 ) ( - hati+ 7 hatj + 5 hatk ) `D. ` ( 1 ) /( sqrt ( 99)) ( 7 hati - 7hatj - hatk ) `

Answer» Correct Answer - B
Lines `L _ 1 and L _ 2 ` are parallel to the vectors
` b _ 1 = 3 hati + hatj + 2 hatk and b _ 2 = hati + 3 hatj + 3 hatk ` respectively.
Therefore, a unit vector perpendicular to both `L _ 1 and L _ 2 ` is
` hatn = ( b _ 1 xx b _ 2 ) / ( | b _ 1 xx b _ 2 | ) `
` b _ 1 xx b _ 2 = |{:( hati , hatj , hatk ) , ( 3, 1, 2 ) , (1, 2, 3 ) :}| = - hati - 7 hatj + 5hatk `
` therefore hatn = ( 1 ) / ( 5sqrt 3 ) ( - hati - 7 hatj + 5 hatk ) `
74.

If the lines ` x = 1 + s, y = - 3 - lamda s , z = 1 + lamda s and x = ( t ) / ( s ) , y = 1 + t , z = 2 - t ` are coplanar, then ` lamda ` is equal toA. ` - 2 `B. `- 1 `C. ` - ( 1 ) / ( 2 ) `D. 0

Answer» Correct Answer - A
Given, line are ` ( x - 1 ) / ( 1 ) = ( y + 3 ) / ( - lamda ) = ( z - 1) / ( lamda ) `
and ` ( x ) / ( 1//2 ) = ( y - 1 ) / ( 1 ) = ( z - 2 ) / ( - 1 ) `
If lines are coplanar, then
` |{:( 1-0, -3-1,1-2 ) , ( 1, - lamda, lamda ), ( 1, 2, 2 ) :}| = 0 `
` rArr |{:( 1 , - 4, - 1 ) , ( 1, - lamda,lamda ) , ( 1, 2, - 2) :}| = 0 rArr lamda = - 2 `
75.

If the lines `(x-1)/2=(y+1)/3=(z-1)/4`and `(x-3)/1=(y-k)/2=z/1`intersect, then k is equal to(1) `-1`(2) `2/9`(3) `9/2`(4) 0A. ` - 1 `B. ` ( 2 ) / ( 9 ) `C. ` ( 9 ) / ( 2 ) `D. ` 0 `

Answer» Correct Answer - C
` L _ 1 : ( x - 1 ) / ( 2 ) = ( y + 1 ) / ( 3 ) = ( z - 1 ) / ( 4 ) = p `
` L _ 2 : ( x - 3 ) / ( 1) = ( y - k) /( 2 ) = ( z - 0 ) / ( 1 ) = q `
` rArr ` Anypoint P on line ` L _ 1 ` is of type ` P ( 2p + 1, 3p -1, 4p + 1 ) ` and any point Q on line ` L _ 2 ` is type Q ` ( q + 3, 2q + k , q ) `
Since, ` L _ 1 and L _ 2 ` are intersecting each other, hence both point P and Q should coincide at the point of intersection i.e., corresponding coordinates of P and Q should be same.
` 2p + 1 = q + 3 and 4 p + 1 = q `, we get the value of p and q as
` p = ( - 3 ) / ( 2 ) and q = - 5 `
On substituting the values of p and q in the third equation ` 3p - 1 = 2q + k `, we get
` therefore 3 ( ( - 3 ) / ( 2 ) ) - 1 = 2 ( - 5) + k`
` rArr k = ( 9 ) / ( 2 ) `
76.

Consider the line L 1 : x 1 y 2 z 1 312 +++ ==, L2 : x2y2z3 123A. ` 0 `B. ` 17//sqrt 3 `C. `41//5sqrt3 `D. `17//5 sqrt 2 `

Answer» Correct Answer - D
The shortest distance between ` L _ 1 and L _ 2 ` is
` (|{:( x _2 - x _ 1 , y _ 2 - y _ 1 , z _ 2- z_ 1 ) , ( a_ 1, b _ 1, c _ 1), ( a_ 2, b _ 2, c _ 2):}| ) /( sqrt ( ( a _ 1 b _ 2 - a _ 2 b _ 1 ) ^ 2 + ( b _ 1 c _ 2 - b _ 2 c _ 1 ) ^ 2 + ( c _ 1 a _ 2 - c _ 2 a _ 1 ) ^ 2 ) ) `
` (|{:( 3,0,4) ,( 3,1,2) ,(1,2,3 ):}| ) / ( sqrt ( 25 + 1 + 49)) = (3 ( 3- 4 ) + 0 + 4 ( 6 - 1) ) / ( sqrt ( 75 )) `
` = ( 17 ) / ( sqrt ( 2 ) ) `
77.

If the lines `(x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5)`are at right angel, thenfind the value of `kdot`A. `-10`B. `-7/10`C. `-10/7`D. `10/7`

Answer» Correct Answer - C
78.

Find the two points on the line ` ( x - 2 ) / ( 1 ) = ( y + 3) / ( - 2 ) = ( z + 5) / ( 2 ) ` on either side of ` ( 2,-3, - 5 ) ` which are at a distance of 3 units from it.A. `(-3,-5,3` and `(1,-1,-7)`B. `(3,-5,-3)` and `(1,-1,-7)`C. `(3,-5,-3)` and `(-1,1,-7)`D. `(-3,-5,3)` and (`-1,1,-7)`

Answer» Correct Answer - B
79.

Match the following columns. A. `{:(A,B,C,D),(q,r,s,p):} `B. `{:(A,B,C,D),(s,p,q,r):} `C. `{:(A,B,C,D),(p,q,r,s):} `D. `{:(A,B,C,D),(r,p,s,q):} `

Answer» Correct Answer - B
A-s, B- p , C - q, D - r
80.

The straight line `(x-3)/3=(y-2)/1=(z-1)/0`isParallel to x-axisParallel to the y-axisParallel to the z-axisPerpendicular to the z-axisA. parallel to X - axisB. parallel to Y - axisC. parallel to Z- axisD. perpendicular to Z- axis

Answer» Correct Answer - D
Equation of x, y and z axes are
` (x ) / (1 ) = ( y ) / (0 ) = ( z ) / ( 0 ) , ( x ) / ( 0 ) = ( y ) / ( 1 ) = ( z ) / ( 0 ) and ( x ) / ( 0 ) = ( y ) / ( 0 ) = ( z ) / ( 1 ) ` respectively.
given equation is ` ( x - 3 ) / ( 3) = ( y - 2 ) / ( 1 ) = ( z - 1 ) / ( 0 ) `
Here, ` 3 xx 0 + 1 xx 0 + 0 xx 1 = 0 `
Hence, the line is perpendicular to Z - axis.
81.

If the lines `(x-4)/15 = (y-17)/9 = (z-11)/8` and `(x-15)/4 = (y-9)/17 = (z-8)/11` are intersecting at point A, then `OA^(2)=`A. `sqrt(1398)`B. `sqrt(1390)`C. 1398D. 1390

Answer» Correct Answer - C
82.

The points (-2,3,4), (1,1,2) and (4,-1,0) areA. collinearB. non-collinearC. non-coplanarD. non-collinear but coplanar

Answer» Correct Answer - A
83.

Find the two points on the line ` ( x - 2 ) / ( 1 ) = ( y + 3) / ( - 2 ) = ( z + 5) / ( 2 ) ` on either side of ` ( 2,-3, - 5 ) ` which are at a distance of 3 units from it.A. `(-3,-5,3` and `(1,-1,-7)`B. `(3,-5,-3)` and `(1,-1,-7)`C. `(3,-5,-3)` and `(-1,1,-7)`D. `(-3,-5,3)` and (`-1,1,-7)`

Answer» Correct Answer - B
84.

If the lines `(x-1)/(-3)=(y-2)/(2k)=(z-3)/2`and `(x-1)/(3k)=(y-1)/1=(z-6)/(-5)`are perpendicular, find the value of k.A. `(-10)/(7)`B. `(10)/(7)`C. `(-10)/(11)`D. `(10)/(11)`

Answer» Correct Answer - A
Given lines can be rewritten as
`(x-1)/(-3)=(y-2)/(2alpha)=(z-3)/(2)`
and `(x-1)/(3alpha)=(y-1)/(1)=(z-6)/(-5)`
`therefore` The direction ratio of given lines are `(-3,2,alpha,2) and (3alpha,1,-5)`
Since, lines are perependicular
`therefore a_(1)a_(2)=b_(1)b_(2)+c_(1)c_(2)=0`
`Rightarrow (-3)(3alpha)+2alpha(1)+2(-5)=0`
`Rightarrow -9alpha+2alpha-10=0`
`Rightarrow alpha=-10/7`
85.

Find the equation of a line passing through `(1,-1,0)`and parallel to the line `(x-2)/3=(2y+1)/2=(5-z)/1`A. ` ( x - 1 ) / ( 3 ) = ( y + 1 ) / ( 2 ) = ( z- 0 )/ ( - 1 ) `B. ` ( x - 1 ) / ( 3 ) = ( y + 1 ) / ( 1 ) = ( z - 0 ) / ( - 1 ) `C. ` ( x - 1 ) /( 3 ) = ( y + 1 ) / ( 1 ) = ( z - 0 ) / ( 1 ) `D. ` ( x - 1 ) / ( 3 ) = ( y + 1 ) / ( 2 ) = ( z - 0 ) /( 1 ) `

Answer» Correct Answer - C
The equation of the given line can be rewritten as
` ( x - 2 ) / ( 3) = ( y + ( 1 ) / ( 2 )) / ( 1 ) = ( z - 5 )/ ( 1 ) `
direction ratios are 3, 1, 1
Hence, equation of required line
` ( x- 1) / ( 3 ) = ( y + 1 ) / ( 1 ) = ( z - 0 ) / ( 1 ) `
86.

The length of theperpendicular drawn from `(1,2,3)`to the line `(x-6)/3=(y-7)/2=(z-7)/(-2)`isa. `4`b. `5`c. `6`d. `7`A. 5 unitsB. 7 unitsC. 4 unitsD. None of these

Answer» Correct Answer - B
Let L be the foot the perpendicular drawn from the point ` P ( 1, 2 , 3 ) ` to the given line.
Let the co - ordinates of L be
` ( 3 lamda + 6, 2 lamda + 7, - 2lamda + 7 ) " " `…(i)
` therefore ` Direction ratios of the given line are proportional to 3, 2, - 2
Since PL is perpendicular to the given line.
` therefore 3 ( 3 lamda + 5 ) + 2 ( 2 lamda + 5 ) + ( - 2 ) ( - 2 lamda + 4 ) = 0 `
` rArr lamda = - 1 `
Hence, co - oridinates of L are ` ( 3, 5, 9 )
` therefore PL = sqrt ( ( 3 - 1 ) ^ 2 + ( 5 - 2 ) ^ 2 + ( 9 - 3 ) ^ 2 )) = ` 7 units
87.

The straight line `(x-3)/3=(y-2)/1=(z-1)/0`isParallel to x-axisParallel to the y-axisParallel to the z-axisPerpendicular to the z-axisA. parallel to X-axisB. parallel to Y-axisC. parallel to Z-axisD. perpendicular to Z-axis

Answer» Correct Answer - D
88.

The point of intersectionof the lines `(x-5)/3=(y-7)/(-1)=(z+2)/1a n d=(x+3)/(-36)=(y-3)/2=(z-6)/4`isa. `(21 ,5/3,(10)/3)`b. `(2,10 ,4)`c. `(-3,3,6)`d. `(5,7,-2)`A. (2,10,4)B. (-3,3,6)C. `(5,7,-2)`D. `(21,5/3, 10/3)`

Answer» Correct Answer - D
89.

The equation to the straight line passing through the points (4,-5,2) and (-1,5,3) isA. `(x-4)/(1)=(y+5)/(-2)=(z+2)/(-1)`B. `(x+1)/(1)=(y-5)/(2)=(z-3)/(-1)`C. `(x)/((-1))=(y)/(5)=z/3`D. `x/4=y/-5=z/-2`

Answer» Correct Answer - A
Equation of straight line passing through (4,-5,-2) and (-1,5,3) is
`(x-4)/(-1-4)=(y+5)/(5+5)=(z+2)/(3+2)`
`Rightarrow (x-4)/(-5)=(y+5)/(10)=(z+2)/(5)`
`Rightarrow (x-4)/(1)=(y+5)/(-2)=(z+2)/(-1)`
90.

If`(x-1)/l=(y-2)/m=(z+1)/n` is the equation of the line through `(1,2,-1)`and`(-1,0,1)`, then`(l,m,n)`A. (0,1,0)B. (-1,0,1)C. (1,1,-1)D. (1,2,-1)

Answer» Correct Answer - C
91.

The direction cosines of the line `x-y+2z=5, 3x+y+z=6` areA. ` ( - 3 ) / ( 5 sqrt ( 2 ) ), ( 5 ) / ( 5sqrt2 ) , ( 4 ) / ( 5sqrt 2 ) `B. ` ( 3 ) /( 5sqrt 2 ) , ( - 5 ) /(5sqrt 2 ) , ( 4 ) / ( 5sqrt2 ) `C. ` ( 3 ) /( 5sqrt 2 ) , ( 5 ) / ( 5sqrt 2) , ( 4 ) / ( 5sqrt 2 ) `D. None of these

Answer» Correct Answer - A
Vector normal to given planes are ` n_ 1 = hati - hatj + 2 hatk and n _ 2 = 3 hati + hatj + hatk ` .
So , their line of intersection is parallel to the vector
` n = n _ 1 xx n _ 2 = |{:( hati , hatj , hatk ) , ( 1, -1, 2 ) , ( 3, 1 , 1 ) :}| = - 3 hati +5 hatj + 4hatk `
` rArr hatn = ( - 3 ) / ( 5 sqrt 2 ) hati + ( 5 ) / ( 3 sqrt 2 ) hatj + ( 4 ) /( 5sqrt 2 ) hatk `
Hence, direction cosines of the line are ` ( - 3 ) / ( 5sqrt2 ) , ( 5 ) / ( 5sqrt2) , ( 4 ) / ( 5sqrt2 ) `
92.

For the lines `L_1 ; vec a+t(vec b+vec c) and L_2 ; vec r=vec b+s(vec c+vec a)` then `L_1 and L_2` 1ntersect atA. aB. bC. a b+cD. a 2b

Answer» Correct Answer - C
Since the lines intersect `therefore a+t(b+c)=b+s(c+a)`
We easily get t=1, s=1
Hence point of intersection is a+b+c.
93.

The lines `x/1=y/2=z/3` and `(x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6)` areA. perpendicularB. coincidentC. intersectingD. skew

Answer» Correct Answer - B
94.

Direction cosines of the line `(x+2)/(2)=(2y-5)/(3),z=-1` areA. `4/5, 3/5,0`B. `3/5, 4/5, 1/5`C. `-3/5, 4/5, 0`D. `4/5, -2/5, 1/5`

Answer» Correct Answer - A
95.

The shortest distance between the lines `(x-5)/4 = (y-7)/-5 = (z+3)/-5` and `(x-8)/7 = (y-7)/1 = (z-5)/3` isA. `342/sqrt(3830)`B. `171/sqrt(3830)`C. `282/sqrt(3830)`D. `141/sqrt(3830)`

Answer» Correct Answer - C
96.

Find the shortest distancebetween the lines `(x-1)/2=(y-2)/3=(z-3)/4a n d(x-2)/3=(y-4)/4=(z-5)/5`.A. `2/sqrt(6)`B. `1/sqrt(6)`C. `2sqrt(6)`D. `sqrt(6)`

Answer» Correct Answer - B
97.

The distance between two parallel lines can be taken out by the formulaA. `d=|(b.(a_(2)-a_(1)))/(|b|)|`B. `d=|(b.(a_(2)-a_(1)))/(|a_(2)-a_(1)|)|`C. `d=|(b.(a_(2)-a_(1)))/(|a_(2)-a_(1)|)|`D. `d=|(bxx(a_(2)-a_(1)))/(|b|)|`

Answer» Correct Answer - D
The distance between the given parallel lines is `d=|(b xx(a_(2) -a_(1)))/(|b|)|`
98.

A symmetrical form of the line of intersection of the planes `x=ay+b` and `z=cy+d` isA. `(x-b)/a = y/1 = (z-d)/c`B. `(x-b)/a = y/b = (z-d)/c`C. `(x-a)/b= y/1 = (z-c)/d`D. `(x+a)/b = y/1 = (z+c)/d`

Answer» Correct Answer - A
99.

Show that the line`(x-1)/2=(y-2)/3=(z-3)/4a n d(x-4)/5=(y-1)/2`intersect. Find their point of intersection.A. (0,0,0)B. (1,1,1)C. (-1,-,1,-1)D. (1,2,3)

Answer» Correct Answer - C
Given lines are `(x-1)/(2)=(y-2)/(3)=(z-3)/(4)=r["say"]......(i)`
`and (x-4)/(5)=(y-1)/(2)=z.....(ii)`
Any point on the line (i) is (2r+1, 3r+2, 4r+3)
If they interest, then the point satisfies the second line we get `(2r+1-4)/(5)=(3r+2-1)/(2)=4r+3`
`Rightarrow (2r-3)/(5)=(3r-1)/(2) Rightarrow r=-1`
`therefore` Required point is [(2(-1)+1,3(-1)+2,4(-1)+3]
`=(-2+1,-3+2,-4+3)`
=(-1,-1,-1)
100.

The equation of line is ` 2x - 2 = 3y + 1 = 6z - 2 ` find its direction ratios and also find the vector equation of the line .A. 1,2,3B. 3,2,1C. 6,3,2D. 2,3,6

Answer» Correct Answer - B