InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Solution of a linear inequality in variable x is represented on number line(i) (A) x ∈ (– ∞, 5) (B) x ∈ (– ∞, 5](C) x ∈ [5, ∞,) (D) x ∈ (5, ∞)(ii)(A) x ∈(9/2, ∞)(B) x ∈ [9/2, ∞)(C) x ∈ [– ∞, 9/2)(D) x ∈ (– ∞, 9/2](iii)(A) x ∈ (– ∞, 7/2)(B) x ∈ (– ∞,7/2](C) x ∈ [7/2, – ∞)(D) x ∈ (7/2 , ∞)(iv)(A) x ∈ (– ∞, – 2)(B) x ∈ (– ∞, – 2](C) x ∈ (– 2, ∞](D) x ∈ [– 2, ∞) |
|
Answer» (i) (D) x ∈ (5, ∞) (ii) (B) x ∈ [9/2, ∞) (iii) (A) x ∈ (– ∞, 7/2) (iv) (B) x ∈ (– ∞, – 2] |
|
| 102. |
Solve: 3(2 – x) > 2(1 – x) |
|
Answer» Given 6 – 3x > - 2x + 3x ⇒ 6 – 2 > - 2x + 3x ⇒ 4 > x. ∴ Solution set = (-∞, 4] |
|
| 103. |
Solve: x + x/2 + x/3 < 11 |
|
Answer» Given: (6x + 3x + 2x)/6 < 11 11x < 11 x 6 = 66 ∴ x < 66/11 = 6 |
|
| 104. |
A = {\(x\) :11\(x\) - 5 > 7\(x\) + 3, \(x\) ∈ R} and B = {\(x\) : 18\(x\) – 9 > 15 + 12\(x\), \(x\) ∈ R}.The range of the set A ∩ B is (a) [– ∞, 4](b) (0, 4) (c) [4, ∞] (d) (– 4, 4) |
|
Answer» (c) [4, ∞) A = {\(x\) : 11\(x\) – 5 > 7\(x\) + 3, \(x\) ∈ R} ⇒ 11\(x\) – 5 > 7\(x\) + 3 ⇒ 4\(x\) > 8 ⇒ \(x\) > 2 ⇒ A = {\(x\) : \(x\) > 2, \(x\) ∈ R} B = {\(x\) : 18\(x\) – 9 > 15 + 12\(x\), \(x\) ∈ R} ⇒ 18\(x\) – 9 > 15 + 12\(x\) ⇒ 6\(x\) > 24 ⇒ \(x\) > 4 ⇒ B = {\(x\) : \(x\) > 4, \(x\) ∈ R} ∴ A ∩ B = {\(x\) : \(x\) > 2, \(x\) ∈ R} ∩ {\(x\) : \(x\) > 4, \(x\) ∈ R} ⇒ \(x\) > 4 ⇒ x∈ [4, ∞). |
|