InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
How many integers are there in the solution set of |2x + 6| < \(\frac{19}{2}\) ?(a) None (b) Two (c) Fourteen (d) Nine |
|
Answer» (d) Nine | 2x + 6 | < \(\frac{19}{2}\) ⇒ 2x + 6 < \(\frac{19}{2}\) or - (2x + 6) < \(\frac{19}{2}\) ⇒ - \(\frac{19}{2}\) < 2x + 6 < \(\frac{19}{2}\) ⇒ - \(\frac{19}{2}\) - 6 < 2x < \(\frac{19}{2}\) - 6 ⇒ \(-\frac{31}{2}\) < 2x < \(\frac72\) ⇒ \(-\frac{31}{2}\) < x < \(\frac72\) ⇒ - 7.75 < x > 1.75 ∴ The integers between –7.75 and 1.75 are –7, –6, –5, –4, –3, –2, –1, 0, 1, i.e., nine in number. |
|
| 52. |
The range of x giving the solution set of –1 < 5x + 4 ≤ 19 is(a) -1 ≤ x < 3 (b) -1 < x ≤ 3 (c) -1 ≤ x ≤ 3 (d) -1 ≤ x ≤ 3 |
|
Answer» (b) –1 < x ≤ 3 –1 < 5x + 4 ≤ 19 ⇒ –1 < 5x + 4 and 5x + 4 ≤ 19 ⇒ –1 – 4 < 5x and 5x ≤ 19 – 4 ⇒ –5 < 5x and 5x ≤ 15 ⇒ –1 < x and x ≤ 3 ⇒ –1 < x ≤ 3 |
|
| 53. |
Find the complete set of values that satisfy the inequalities | |x| – 3 | < 2 and | |x| – 2| < 3.(a) (– 5, 5) (b) (– 5, – 1) ∪ (1, 5) (c) (1, 5) (d) (– 1, 1) |
|
Answer» (a) (– 5, – 1) ∪ (1, 5) Let |x| = p, where p > 0 …(i) So |p – 3| < 2 and |p – 2| < 3 …(ii) ⇒ 1 < p < 5 and – 1 < p < 5 …(iii) (∴ |x – a| < r ⇒ a – r < x < a + r) Therefore, the conditions (i), (ii) and (iii) are satisfied by 1 < p < 5, i.e. 1 < | x | < 5, i.e., | x | > 1 and | x | < 5 i.e., x < – 1 or x > 1 and – 5 < x < 5 ⇒ \(x\)∈ (– 5, – 1) ∪ (1, 5). |
|
| 54. |
Solve the inequality 2 ≤ 3x – 4 ≤ 5 |
|
Answer» 2 ≤ 3x – 4 ≤ 5 Thus, all the real numbers, x, which are greater than or equal to 2 but less than or equal to 3, are the solutions of the given inequality. The solution set for the given inequality is [2, 3]. |
|
| 55. |
Solve the inequality 6 ≤ –3(2x – 4) < 12 |
|
Answer» 6 ≤ – 3(2x – 4) < 12 ⇒ 2 ≤ –(2x – 4) < 4 ⇒ –2 ≥ 2x – 4 > –4 ⇒ 4 – 2 ≥ 2x > 4 – 4 ⇒ 2 ≥ 2x > 0 ⇒1 ≥ x > 0 Thus, the solution set for the given inequality is (0, 1]. |
|
| 56. |
If a1, a2, a3 ....... an are positive real numbers whose product is a fixed number ‘c’, then the minimum value of a1 + a2 ..... + an–1 + 2an is(a) n (2c)1/n (b) (n + 1)c1/n (c) 2nc1/n (d) (n + 1) (2c)1/n |
|
Answer» (c) n(2c)\(\frac1n\) For positive real numbers, AM > GM ⇒ \(\frac{(a_1+a_2+a_3+.......+2a_n)}{n}\) > (a1.a2.a3.......2an)\(\frac1n\) ⇒ (a1 + a2 + a3 + ......+ 2an) > n(c.2)\(\frac1n\) = n(2c)\(\frac1n\) Hence the least value is n(2c)\(\frac1n\) |
|
| 57. |
Solve 5x < 24, when x ∈ N |
|
Answer» We have, 5x < 24 \(\frac{5x}{4}\) < \(\frac{24}{4}\) or x < \(\frac{24}{5}\) This is true when x =1,2,3,4 (x being a natural number) |
|
| 58. |
If x is an integer that satisfies 9 < 4x – 1 ≤ 19, then x is an element of which of the following sets?(a) {3, 4}(b) {2, 3, 4}(c) {3, 4, 5}(d) {2, 3, 4, 5} |
|
Answer» (c) {3, 4, 5} Given, 9 < 4x – 1 ≤ 19 ⇒ 9 < 4x – 1 and 4x – 1 ≤ 19 ⇒ 9 + 1 < 4x and 4x ≤ 19 + 1 ⇒ x > \(\frac52\) and x ≤ 5 ∴ x < \(\frac52\) ≤ 5 ∵ x ∈ Z ∴ x = {3, 4, 5}. |
|
| 59. |
The set of values for which x3 + 1 > x2 + x is(a) x > 0 (b) x < 0 (c) x > – 1 (d) – 1 < x < 1 |
|
Answer» (c) x > – 1 x3 + 1 > x2 + \(x\) ⇒ x3 + 1 – x2 – \(x\) > 0 ⇒ x3 – x2 + 1 – \(x\) > 0 ⇒ x2 (x – 1) – (x – 1) > 0 ⇒ (x2 – 1) (x – 1) > 0 ⇒ (x + 1) (x – 1)2 > 0 As (x – 1)2 is +ve so the given expression is > 0, when x + 1 > 0 ⇒ x > – 1. |
|
| 60. |
Solve (|x – 1| – 3) (|x + 2| – 5) < 0. Then(a) –7 < x < – 2 (b) 3 < x < 4 (c) x < – 7 and x > 4 (d) Both (a) and (b) |
|
Answer» (d) Both (a) and (b) (|x – 1| – 3) (|x + 2| – 5) < 0 The product of the two factors is < 0, i.e., negative when one of the factors is positive and one negative. Case I : (|x – 1| – 3) > 0 and (|x + 2| – 5) < 0 ⇒ |x – 1| > 3 and |x + 2| < 5 ⇒ – (x – 1) > 3, (x – 1) > 3 and –(x + 2) < 5, x + 2 < 5 ⇒ – x > 2, x > 4 and – x < 7, x < 3 ⇒ \(x\) < – 2, x > 4 and x > –7, x < 3 Combining we get – 7 < x < – 2 Case II : (|x – 1| – 3) < 0 and (|x + 2| – 5) > 0 ⇒ |x – 1| < 3 and |x + 2| > 5 ⇒ – (x – 1) < 3, (x – 1) < 3 and (x + 2) > 5, – (x + 2) > 5 ⇒ – \(x\) < 2, \(x\) < 4 and \(x\) > 3, – \(x\) > 7 ⇒ \(x\) > – 2, \(x\) < 4 and \(x\) > 3, \(x\) < – 7 ⇒ 3 < \(x\) < 4 ∴ –7 < \(x\) < – 2 and 3 < \(x\) < 4 is the solution. |
|
| 61. |
If – x2 + 3x + 4 > 0, then which of the following is correct?(a) x∈ (– 1, 4) (b) x∈ [– 1, 4] (c) x∈ (– ∞, – 1) ∪ (4, ∞) (d) x∈ (– ∞, 1] ∪ [4, ∞) |
|
Answer» (a) x∈ (– 1, 4) – x2 + 3x + 4 > 0 ⇒ x2 – 3x – 4 < 0 ⇒ (x – 4) (x + 1) < 0 ⇒ (x – 4) < 0, (x + 1) > 0 or (x – 4) > 0, (x + 1) < 0 ⇒ x < 4, x > – 1 or x > 4, x < – 1 ⇒ – 1 < x < 4. |
|
| 62. |
What values of x satisfy \(x^{\frac23}+x^{\frac13}\) – 2 < 0?(a) – 8 < x < 8 (b) – 8 < x < 1 (c) – 1 < x < 8 (d) 1 < x < 8 |
|
Answer» (a) – 8 < x < 1 \(x^{\frac23}+x^{\frac13}\) – 2 < 0 ⇒ y2 + y – 2 < 0, where y = \(x^{\frac13}\) ⇒ (y – 1) (y + 2) < 0 ⇒ (y – 1) < 0, (y + 2) > 0 or (y – 1) > 0, (y + 2) < 0 ⇒ y < 1, y > – 2 or y > 1, y < – 2 ⇒ – 2 < y < 1 ⇒ – 2 < \(x^{\frac13}\) < 1 ⇒ – 8 < x < 1. |
|
| 63. |
Which of the following values of x do not satisfy the inequality x2 – 3x + 2 > 0 at all.(a) 1 < \(x\) < 2 (b) – 1 > \(x\) > – 2 (c) 0 < \(x\)< 2 (d) 0 > \(x\) > – 2 |
|
Answer» (a) 1 < x < 2 x2 – 3\(x\) + 2 > 0 ⇒ (\(x\) – 2) (\(x\) – 1) > 0 ⇒ (\(x\) – 2) > 0, (\(x\) – 1) < 0 or (\(x\) – 2) < 0, (\(x\) – 1) > 0 ⇒ \(x\) > 2, \(x\) < 1 or \(x\) < 2, \(x\) > 1 ⇒ \(x\) < 1 or \(x\) > 2 ∴ No value of x which lies between these extremes, i.e., 1 and 2 satisfies the inequality, i.e., 1 < \(x\) < 2 is the solution set not satisfying the inequality x2 – 3\(x\) + 2 > 0 at all. |
|
| 64. |
If |x + 3| ≥ 10 , then(A) x ∈ (– 13, 7] (B) x ∈ (– 13, 7](C) x ∈ (– ∞, – 13] ∪ [7, ∞) (D) x ∈ [– ∞, – 13] ∪ [7, ∞) |
|
Answer» (D) is the correct choice, since |x +3| ≥ 10 , ⇒ x + 3 ≤ – 10 or x + 3 ≥ 10 ⇒ x ≤ – 13 or x ≥ 7 ⇒ x ∈ (– ∞, – 13] ∪ [7, ∞) |
|
| 65. |
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then(A) breadth > 20 cm (B) length < 20 cm(C) breadth x ≥ 20 cm (D) length ≤ 20 cm |
|
Answer» (C) is the correct choice. If x cm is the breadth, then 2 (3x + x) ≥ 160 ⇒ x ≥ 20 |
|
| 66. |
Solve the inequality, 3x – 5 < x + 7, when(i) x is a natural number(ii) x is a whole number(iii) x is an integer (iv) x is a real number |
|
Answer» We have 3x – 5 < x + 7 ⇒ 3x < x + 12 (Adding 5 to both sides) ⇒ 2x < 12 (Subtracting x from both sides) ⇒ x < 6 (Dividing by 2 on both sides) (i) Solution set is {1, 2, 3, 4, 5} (ii) Solution set is {0, 1, 2, 3, 4, 5} (iii) Solution set is {....– 3, – 2, –1, 0, 1, 2, 3, 4, 5} (iv) Solution set is {x : x ∈ R and x < 6}, i.e., any real number less than 6. |
|
| 67. |
Solve: 2(2x + 3) - 10 < 6(x - 2) |
|
Answer» Given: 4x + 6 - 10 < 6x - 12 ⇒ 12 - 4 < 6x - 4x ⇒ 8 < 2x ⇒ x > 8/2 = 4 ∴ Solution set = (4, ∞) |
|
| 68. |
What do you mean by inequality? |
|
Answer» An inequality is a statement involving quantities (variables or constants) connected to each other with signs of inequality, i.e.,<, <, > , >. Thus, x < y, x < y, x > y and x > y represent inequalities. |
|
| 69. |
Solve: 4x + 3 < 6x + 7. |
|
Answer» Given: 4x + 3 < 6x + 7 ⇒ - 7 + 3 < 6x – 4x ⇒ -4 < 2x ⇒ x > - 4/2 = - 2 ∴ Solution set = (-2, ∞). |
|
| 70. |
Solve: 4x + 3 < 5x + 7 |
|
Answer» Given: 4x + 3 < 5x + 7 ⇒ -7 + 3 < 5x – 4x ⇒ -4 < x ∴ Solution set = (-4, ∞). |
|
| 71. |
Solve: 3x – 7 > 5x -1 |
|
Answer» Given: 3x – 7 > 5x – 1 ⇒1 – 7 > 5x – 3x ⇒ -6 > 2x ⇒ x > - 6/2 = - 3 ∴ Solution set = (-3, ∞) |
|
| 72. |
Solve: 3(x – 1) < 2(x – 3) |
|
Answer» Given: 3(x – 1) < 2(x – 3) ⇒ 3x - 3 < 2x - 6 ⇒ 3x – 2x < - 6 + 3 ⇒ x < -3 ∴ Solution set = (-∞, -3]. |
|
| 73. |
Solve the given inequality for real x: 3(2 – x) ≥ 2(1 – x) |
|
Answer» 3(2 – x) ≥ 2(1 – x) Thus, all real numbers x, which are less than or equal to 4, are the solutions of the given inequality. |
|
| 74. |
Solve the given inequality for real x: 3(x – 1) ≤ 2 (x – 3) |
|
Answer» 3(x – 1) ≤ 2(x – 3) Thus, all real numbers x, which are less than or equal to –3, are the solutions of the given inequality. |
|
| 75. |
State which of the following statements is True or False(i) If x < y and b < 0, then x/b < y/b(ii) If xy > 0, then x > 0 and y < 0(iii) If xy > 0, then x < 0 and y < 0(iv) If xy < 0, then x < 0 and y < 0(v) If x < –5 and x < –2, then x ∈ (– ∞, – 5)(vi) If x < –5 and x > 2, then x ∈ (– 5, 2)(vii) If x > –2 and x < 9, then x ∈ (– 2, 9)(viii) If | x| > 5, then x ∈ (– ∞, – 5) ∪ [5, ∞)(ix) If | x| ≤ 4, then x ∈ [– 4, 4](x) Graph of x < 3 is(xi) Graph of x ≥ 0 is(xii) Graph of y ≤ 0 is(xiii) Solution set of x ≥ 0 and y ≤ 0 is(xiv) Solution set of x ≥ 0 and y ≤ 1 is(xv) Solution set of x + y ≥ 0 is |
|
Answer» (i) False (ii) False (iii) True (iv) False (v) True (vi) False (vii) True (viii) False (ix) True (x) False (xi) True (xii) False (xiii)False (xiv)True (xv) True |
|
| 76. |
Fill in the blanks of the following:(i) If – 4x ≥ 12, then x ... – 3.(ii) If -4x/3 ≤ -3,then x ... 4.(iii) If 2/(x+2) > 0, then x ... –2.(iv) If x > – 5, then 4x ... –20.(v) If x > y and z < 0, then – xz ... – yz.(vi) If p > 0 and q < 0, then p – q ... p.(vii) If |x + 2| > 5, then x ... – 7 or x ... 3.(viii) If – 2x + 1 ≥ 9, then x ... – 4. |
|
Answer» (i) ≤ (ii) ≥ (iii) > (iv) > (v) > (vi) > (vii) < , > (viii) ≤ |
|
| 77. |
Fill in the blanks in the following:(i) If x ≥ – 3, then x + 5 ................... 2(ii) If – x ≤ – 4, then 2x ................... 8(iii) If x−1 ≤ 2 , then – 1..... x .... 3(iv) If p > 0 and q < 0, then p + q ... p |
|
Answer» (i) (≥), because same number can be added to both sides of inequality without changing the sign of inequality (ii) (≥), after multiplying both sides by – 2, the sign of inequality is reversed. (iii) (≤, ≤ ), x −1 ≤ 2 ⇒ – 2 ≤ x – 1 ≤ 2 ⇒ –1 ≤ x ≤ 3. (iv) (<), as p is positive and q is negative, therefore, p + q is always smaller than p. |
|
| 78. |
Find the set of values of x satisfying \(\bigg|\frac{5-x}{3}\bigg|<2\)(a) 1 < x < 11 (b) – 1 < x < 11 (c) x < 11 (d) None of these |
|
Answer» (b) –1 < x < 11 \(\bigg|\frac{5-x}{3}\bigg|<2\) ⇒ |5-x| < 6 ⇒ – 6 < 5 – x < 6 ⇒ –11 < – x < 1 ⇒ 11 > x > – 11 (∵ a < b < c ⇒ ma > mb > mc, when m is –ve. Here m = –1) ⇒ –1 < x < 11. |
|
| 79. |
If |\(x\) + 3| > 7, then \(x\) ∈(a) (– 10, 4) (b) (– ∞, – 10] ∪ [4, ∞) (c) [– 10, 4] (d) [– 10, ∞] |
|
Answer» (b) (–∞, –10] ∪ [4, ∞) |x + 3| > 7 ⇒ \(x\) + 3 < – 7 or x + 3 > 7 ⇒ \(x\) < – 10 or \(x\) > 4 ⇒ \(x\) ∈ (– ∞, – 10] or \(x\)∈ [4, ∞) ⇒ \(x\)∈ (–∞, –10] ∪ [4, ∞). |
|
| 80. |
The solution of 4x2 + 4x + 1 > 0 is(a) All real numbers except \(-\frac12\)(b) All real numbers (c) (– ∞, + ∞) (d) None of these |
|
Answer» (a) all real numbers except \(-\frac12\). 4x2 + 4x + 1 > 0 ⇒ (2x + 1)2 > 0 ⇒ (2x + 1) < 0 or (2x + 1) > 0 ⇒ x > \(-\frac12\) or x < \(-\frac12\) ∴ The inequality holds for all real numbers except x = \(-\frac12\). |
|
| 81. |
Solve for x, |x + 1| + |x| >3 . |
|
Answer» On LHS of the given inequality, we have two terms both containing modulus. By equating the expression within the modulus to zero, we get x = -1,0 as critical points. These critical points divide the real line in three parts as (−∞, −1),[−1,0),[0. ∞). Case - I : When −∞ < x < −1 |x + 1| + |x| > 3 ⇒ −x− 1 − x > 3 ⇒ x < −2. Case - II When −1 ≤ x < 0 x + 1| + |x| > 3 ⇒ x + 1 − x > 3 ⇒ 1 > 3 Case - III When 0 ≤ < ∞, x + 1| + |x| > 3 ⇒ x + 1 + x > 3 ⇒ x > 1. Combining the results of cases (I) (II) and (III), we get, x ∈ (−∞, −2),∪ [1, ∞) |
|
| 82. |
If |x – 4| < 9, then(a) |x| < 13 (b) |x – 13| < 0 (c) – 5 < x < 13 (d) – 13 < x < 13 |
|
Answer» (c) –5 < \(x\) < 13 |x – 4| < 9 ⇒ – 9 < x – 4 < 9 ⇒ – 9 + 4 < \(x\) < 9 + 4 ⇒ –5 < \(x\) < 13. |
|
| 83. |
Given a > 0, b > 0, a > b and c ≠ 0, the inequality which is not always correct is(a) a – c > b – c (b) \(\frac{a}{c^2}>\frac{b}{c^2}\)(c) a + c > b + c (d) ac > bc |
|
Answer» (d) ac > bc a > b ⇒ ac > bc when c > 0, but a > b ⇒ ac < bc when c < 0. ∴ ac > bc is not always correct. |
|
| 84. |
If a b, c are positive and not all equal, then prove that: (a + b + c)(bc + ca + ab) > 9abc |
|
Answer» We have, (a + b + c)(bc + ca + ab) > 9abc = abc+ a2c + a2b + b2c+ abc + b2a + c2a + c2b + abc −9abc = a (b2 + c2 ) + b(c2 + a2 ) + c(a2 + b2 ) − 6abc = a (b2 + c2 − 2bc) + b(c2 + a2 − 2ca) + c(a2 + b2 − 2ab) = a (b − c)2 + b(c − a)2 + c(a − b)2 Which is positive because each term of RHS is positive. Thus, (a + b + c)(bc + ca + ab) − 9abc > 0 (a + b + c)(bc + ca + ab) > 9abc. |
|
| 85. |
Solve 3 – 2x < 9, when x ∈ R. Express the solution in the form of interval. |
|
Answer» We have, 3 – 2x < 9, Transposing 3 to RHS, − 2x < 9 – 3 Or − 2x < 6 Or \(\frac{-2x}{-2}\) > \(\frac{6}{-2}\) Or x >−3 ∴ When x is real, the solution is (- 3, ∞) |
|
| 86. |
The number of positive integral values of m satisfying the inequalities 8m + 35 > 75 and 5m + 18 < 53 is(a) 4 (b) 1 (c) 0 (d) 2 |
|
Answer» (b) 1 8m + 35 > 75 and 5m + 18 < 53 ⇒ 8m > 40 ⇒ 5m < 35 ⇒ m > 5 ⇒ m < 7 ∴ There is only one integral value of m, i.e., m = 6 satisfying the given inequalities. |
|
| 87. |
The set of values of x for which the inequalities x2 – 3x – 10 < 0, 10x – x2 – 16 > 0 hold simultaneously is(a) (–2, 5) (b) (2, 8) (c) (–2, 8) (d) (2, 5) |
|
Answer» (d) (2, 5) x2 – 3x – 10 < 0 ⇒ (x + 2) (x – 5) < 0 ⇒ (x – (–2)) (x – 5) < 0 ⇒ x∈ (–2, 5) (If a < b, then (x – a) (x – b) < 0 ⇒ a < x < b) 10x – x2 – 16 > 0 ⇒ x2 – 10x + 16 < 0 ⇒ (x – 2) (x – 8) < 0 ⇒ x∈ (2, 8) (If a < 0, then (x – a) (x – b) < 0 ⇒ a < x < b) ∴ x∈ (–2, 5) ∩ (2, 8) ⇒ x∈ (2, 5). |
|
| 88. |
If a, b, c are the lengths of the sides of a non-equilateral triangle, then \(\frac1{a^2}+\frac1{b^2}+\frac1{c^2}\) is(a) > \(\frac{s}{a+b+c}\)(b) > \(\frac{2s}{abc}\)(c) < \(\frac{2s}{abc}\) (d) None of these, where s = \(\frac{a+b+c}{2}\). |
|
Answer» (b) > \(\frac{2s}{abc}\) a > 0, b > 0, c > 0 ⇒ ab > 0, bc > 0, ca > 0 ∴ \(\frac{(ab)^2+(bc)^2}{2}\) > \(\big((ab)^2(bc)^2\big)^{\frac12}\) ⇒ a2b2 + b2c2 > 2 (a2b4c2)\(\frac12\) ⇒ a2b2 + b2c2 > 2 (abc).b …(i) Similarly, b2c2 + c2a2 > 2 (abc).c …(ii) c2a2 + a2b2 > 2(abc)a …(iii) (i) + (ii) + (iii) ⇒ 2(a2b2 + b2c2 + c2a2) > 2 abc (a + b + c) ⇒ a2b2 + b2c2 + c2a2 > abc (a + b + c) Dividing both sides by a2b2c2, we have ⇒ \(\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}\) > \(\frac{a+b+c}{abc}\) ⇒ \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) > \(\frac{2s}{abc}\) ⇒ \(\frac{2s}{abc}\) < \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\). |
|
| 89. |
For three distinct positive real numbers a, b, c (1 + a3) (1 + b3) (1 + c3) is greater than(a) abc (b) (1 + abc) (c) (1 + abc)3 (d) (1 + abc)2 |
|
Answer» (c) (1 + abc)3 (1 + a3) (1 + b3) (1 + c3) = 1 + a3 + b3 + c3 + a3b3 + b3c3 + c3a3 + a3b3c3 …(i) Now for distinct positive reals, a, b, c, AM > GM \(\frac{a^3+b^3+c^3}{3}>(a^3b^3c^3)^{\frac13}\) ⇒ a3 + b3 + c3 > 3abc …(ii) (∵ a, b, c > 0 ⇒ a3, b3, c3 > 0) Also \(\frac{a^3b^3+b^3c^3+c^3a^3}{3}>(a^3b^3.b^3c^3.c^3a^3)^{\frac13}\) ⇒ a3b3 + b3c3 + c3a3 > 3a2b2c2 …(iii) ∴ Putting the values from (ii) and (iii) on the RHS of (i), we have (1 + a3) (1 + b3) (1 + c3) > 1 + 3abc + 3a2b2c2 + a3b3c3 = (1 + abc)3 ∴ (1 + a3) (1 + b3) (1 + c3) > (1 + abc)3. |
|
| 90. |
If a, b, c are the sides of a non-equilateral triangle, then the expression (b + c – a) (c + a – b) (a + b – c) – abc is(a) negative (b) non-negative (c) positive (d) non-positive |
|
Answer» (a) negative Let x = b + c – a, y = c + a – b, z = a + b – c Since a, b, c are the sides of a non-equilateral triangle, by the triangle inequality a + b > c, b + c > a, c + a > b ⇒ a + b – c > 0, b + c – a > 0, c + a – b > 0 ⇒ z > 0, x > 0, y > 0 Also, x, y, z are distinct. ∴ AM > GM \(c=\frac{x+y}{2}>\sqrt{xy}\) \(b=\frac{x+z}{2}>\sqrt{xz}\) \(a=\frac{y+z}{2}>\sqrt{yz}\) ∴ abc > \(\sqrt{xy}.\sqrt{xz}.\sqrt{yz}\) ⇒ abc > xyz ⇒ abc > (b + c – a) (c + a – b) (a + b – c) ⇒ (b + c – a) (c + a – b) (a + b – c) – abc < 0, i.e., negative. |
|
| 91. |
If a, b, c are positive real numbers such that a + b + c = p, then \(\frac1a+\frac1b+\frac1c\) is greater than(a) 16 (b) 9p (c) \(\frac9p\)(d) \(\frac{16}{p}\) |
|
Answer» (c) \(\frac9p\) The AM of mth powers of n positive numbers is greater than the mth power of their AM if m < 0 or m > 1. So for m = – 1, \(\frac{a^{-1}+b^{-1}+c^{-1}}{3}\) > \(\big(\frac{a+b+c}{3}\big)^{-1}\) ⇒ \(\frac13\)\(\big(\frac1a+\frac1b+\frac1c\big)\) > \(\big(\frac{p}{3}\big)^{-1}\) (Given: a + b + c ≡ p) ⇒\(\big(\frac1a+\frac1b+\frac1c\big)\) > \(\frac9p\) |
|
| 92. |
Find all pairs of consecutive even positive integers both of which are larger than 8, such that their sum is less than 25. |
|
Answer» Let x be the smaller of the two consecutive even positive integers, then the other even integer is x + 2. Given x > 8 and x + (x + 2) < 25. ⇒ x > 8, and 2x + 2 < 25. ⇒ x > 8, 2x < 23 ⇒ x > 8, x < 23/2 ⇒ 8 < x < 23/2 ⇒ x = 10, ∴ the required parity even integers is (10, 12) |
|
| 93. |
In the first four examinations each of 100 marks, Mohan got 94, 73, 72 and 84 marks. If a final average greater than or equal to 80 and less than 90 is needed to obtain a final grade B in a course, than what range of marks in the fifth (last) examination will result, if Mohan receiving grade B in the course? |
|
Answer» Let x be the score obtained by Mohan in the last examination. Then, 80 ≤ \(\frac{94+73+72+84+x}{5}\) < 90 ⟹ 80 ≤ \(\frac{323+x}{5}\) < 90 ⟹ 400 ≤ 323 + x < 450 [Multiplying both sides by 5] ⟹ 400 − 323 ≤ 323 + x − 323 < 450 − 323 [Subtracting 3 from both sides] ⟹ 77 ≤ x > 127 Since, the upper limit is 100, therefore the required range is 77 ≤ x ≥ 100. |
|
| 94. |
To receive grade ‘A’ in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita’s marks in first four examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain in fifth examination to get grade ‘A’ in the course. |
|
Answer» Let x be the marks in the fifth test obtained by Sunita (87 + 92 + 94 + 95 + x)/5 ≥ 90 ⇒ 368 + x > 450 ⇒ x > 82 So, Sunita must obtain a minimum of 82 marks to get grade ‘A’. |
|
| 95. |
Ravi obtained 70 and 75 marks in first two unit test. Find the minimum marks he should get in the third test to have an average of at least 60 marks. |
|
Answer» Let x be the marks obtained in the third test. (70 + 75 + x)/3 ≥ 60 ⇒ 145+ x≥180 ⇒ x> 180-145 = 35. Thus, Ravi must obtain a minimum of 35 marks to get an average of at least 60 marks. |
|
| 96. |
Solve 24x < 100, when (i) x is a natural number (ii) x is an integer. |
|
Answer» Given: 24x < 100 x < 100/24 = 4.16 (i) when x ∈ N, solution set ={ 1, 2, 3, 4} (ii) when x ∈ Z, ∴ Solution set = {… -3, -2, -1, 0,1, 2, 3, 4} |
|
| 97. |
Solve: 5x – 3 < 7, when (i) x is an integer (ii) x is a real number. |
|
Answer» Given: 5x – 3 < 7 ⇒ 5x < 7 + 3 = 10 ∴ x < 10/5 = 2 (i) If x is an integer, solution set = {…, -3, -2, -1, 0, 1}. (ii) If x is a real number, solution set = (-∞, 2). |
|
| 98. |
Solve the given inequality for real x: 4x + 3 < 5x + 7 |
|
Answer» 4x + 3 < 5x + 7 Thus, all real numbers x, which are greater than –4, are the solutions of the given inequality. |
|
| 99. |
The inequality | 3 – p | – 4 < 1 can be represented on the number line as : |
|
Answer» (b) | 3 – p | –4 < 1 ⇒ | 3 – p | < 5 ⇒ –5 < 3 – p < 5 ⇒ –8 < –p < 2 ⇒ –2 < p < 8 (Note the step: Dividing by minus sign reverses the direction of the inequality) |
|
| 100. |
Solution of a linear inequality in variable x is represented on number line. Choose the correct answer from the given four options in each of theA. x ∈ (–∞, 5) B. x ∈ (–∞, 5] C. x ∈ [5, ∞,) D. x ∈ (5, ∞) |
|
Answer» D. x ∈ (5, ∞) The above graph represents all values of x greater than 5 excluding 5, hence x > 5 i.e. x ∈ (5, ∞) |
|