Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

The dual of ‘(p ∧ t) ∨ (c ∧ ~q)’ where t is a tautology and c is a contradiction, is(A) (p ∨ c) ∧ (t ∨ ~q) (B) (~p ∧ c) ∧ (t ∨ q) (C) (~p ∨ c) ∧ (t ∨ q) (D) (~p ∨ t) ∧ (c ∨ ~q)

Answer»

Correct option: (A) (p ∨ c) ∧ (t ∨ ~q) 

102.

Contrapositive of p → q is (A) q → p (B) ~q → p (C) ~q → ~p (D) q → ~p

Answer»

Correct option: (C) ~q → ~p 

103.

The symbolic form of logic for the following circuit is(A) (p ∨ q) ∧ (~p ∧ r ∨ ~q) ∨ ~r (B) (p ∧ q) ∧ (~p ∨ r ∧ ~q) ∨ ~r (C) (p ∧ q) ∨ [~p ∧ (r ∨ ~q)] ∨ ~r (D) (p ∨ q) ∧ [~p ∨ (r ∧ ~q)] ∨ ~rH

Answer»

Correct option: (C) (p ∧ q) ∨ [~p ∧ (r ∨ ~q)] ∨ ~r 

104.

Which of the following is an incorrect statement in logic ? (A) Multiply the numbers 3 and 10. (B) 3 times 10 is equal to 40. (C) What is the product of 3 and 10? (D) 10 times 3 is equal to 30.

Answer»

Correct option: (B) 3 times 10 is equal to 40. 

‘Incorrect statement’ means a statement in logic with truth value false.

Options (A) and (C) are not statements in logic.

Option (D) has truth value True.

Option (B) is a statement in logic with truth value false.

105.

Check whether the following switching circuits are logically equivalent – Justify.(A) (i)(ii)(B) (i) (ii)

Answer»

(A) Let p : the switch S1 is closed 

q : the switch S2 is closed 

r : the switch S3 is closed 

(A) The symbolic form of the given switching circuits are :

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r) respectively. 

By Distributive Law, 

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

Hence, 

The given switching circuits are logically equivalent.

(B) The symbolic form of the given switching circuits are :

(p ∨ q) ∧ (p ∨ r) and p ∨ (q ∧ r) 

By Distributive Law, 

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

Hence,

The given switching circuits are logically equivalent.

106.

The statement p → (~q) is equivalent to(A) q → p (B) ~q → ~p (C) p → ~q (D) ~q → p

Answer»

Correct option: (B) ~q → ~p 

p → (~q) ≡ ~p ∨ ~q

≡ ~q ∨ ~p

107.

The negation of p ∨ ( ~ q ∧ ~ p) is (A) ~ p ∧ q (B) p ∧ ~ q (C) ~ p ∨ ~ q (D) ~ p ∨ ~ q

Answer»

Correct option: (A) ~ p ∧ q 

~[ p ∨ ( ~ q ∧ ~ p)]

≡ ~ p ∧ ~ (~ q ∧ ~ p) ….[By De Morgan’s law]

≡ ~ p ∧ [ ~ ( ~ q ) ∨ ~ (~ p) ]

≡ ~ p ∧ (q ∨ p)

≡ ( ~ p ∧ q ) ∨ ( ~ p ∧ p) ….[Distributive property]

≡ ( ~ p ∧ q ) ∨ F ….[Complement law]

≡ ~ p ∧ q ….[Identity law]

108.

The negation of q ∨ ~(p ∧ r) is(A) ~q ∧ ~(p ∨ r) (B) ~q ∧ (p ∧ r) (C) ~q ∧ (p ∧ r) (D) ~q ∧ (p ∧ r)

Answer»

Correct option: (B) ~q ∧ (p ∧ r) 

Negation of q ∨ ~(p ∧ r) is

~[q ∨ ~(p ∧ r)] ≡ ~q ∧ ~(~(p ∧ r))

≡ ~q ∧ (p ∧ r)

109.

(p ∧ q) ∨ (~q ∧ p) ≡(A) ∨ p (B) p (C) ~q (D) p ∧ q

Answer»

Correct option: (B)

(p ∧ q) ∨ (~q ∧ p) ≡ (p ∧ q) ∨ (p ∧ ~ q)

≡ p ∧ (q ∨ ~q)

≡ p ∧ T ≡ p

110.

Which of the following is logically equivalent to ~[p → (p ∨ ~q)]? (A) p ∨ (~p ∧ q ) (B) p ∧ (~p ∧ q) (C) p ∧ (p ∨ ~q) (D) p ∨ (p ∧ ~q)

Answer»

Correct option: (B) p ∧ (~p ∧ q) 

~[p → (p ∨ ~q)] ≡ p ∧ ~[p ∨ (~q)]

≡ p ∧ (~p ∧ q)

111.

Dual of the statement (p ∧ q) ∨ ~q ≡ p ∨ ~q is (A) (p ∨ q) ∨ ~q ∨ p ∨ ~q (B) (p ∧ q) ∧ ~q ∧ p ≡ ~q (C) (p ∧ q) ∧ ~q ∧ p ≡ ~q (D) (~p ∧ ~q) ∧ q ∧ ~p ≡ q

Answer»

Correct option: (C) (p ∧ q) ∧ ~q ∧ p ≡ ~q 

112.

If p and q are true statements in logic, which of the following statement pattern is true?(A) (p ∨ q) → ~ q (B) (p ∨ q) ∧ ~ q (C) (p ∧ ~q) ∧ q (D) (~p ∧ q) ∧ q

Answer»

Correct option: (C) (p ∧ ~q) ∧ q 

(p ∧ ~q) → q ≡ (T ∧ ~T) → T

≡ (T ∧ F) → T

≡ F → T

≡ T

113.

Which of the following is not true for any two statements p and q?(A) ~[p ∨ (~q)] ≡ ~p ∧ q (B) (p ∨ q) ∨ (~q) is a tautology (C) ~(p ∧ ~p) is a tautology (D) ~(p ∨ q) ≡ ~p ∨ ~q

Answer»

Correct option: (D) ~(p ∨ q) ≡ ~p ∨ ~q

~(p ∨ q) ≡ ~p ∨ ~q is not true as it contradicts De Morgan’s law.

∴ option (D) is not true.

114.

The Boolean Expression (p ∧ ~q) ∨ q ∨ (~p ∧ q) is equivalent to:(A) p ∧ q (B) p ∨ q (C) p ∨ ~q (D) ~p ∧ q

Answer»

Correct option: (B) p ∨ q 

(p ∧ ~q) ∨ q ∨ (~p ∧ q)

≡ [(p ∨ q) ∧ (~q ∨ q)] ∨ (~p ∧ q)

≡ [(p ∨ q) ∨ T] ∨ (~p ∧ q)]

≡ (p ∨ q) ∨ (~p ∨ q)

≡ (T ∨ q) ∧ (p ∨ q) ≡ T ∧ (p ∨ q)

p ∨ q

115.

Negation of (p ∧ q) → (~ p ∨ r) is(A) (p ∨ q) ∧ (p ∧ ~ r) (B) (p ∧ q) ∨ (p ∧ ~ r)(C) (p ∧ q) ∧ (p ∧ ~ r) (D) (p ∨ q) ∨ (p ∧ ~ r)

Answer»

Correct option: (C) (p ∧ q) ∧ (p ∧ ~ r) 

Since, p → q ≡ ~p ∨ q

∴ ~[(p ∧ q) → (~p ∨ r)]

≡ ~[~(p ∧ q) ∨ (~p ∨ r)]

≡ ~[(~p ∨ ~q) ∨ (~p ∨ r)]

≡ ~(~p ∨ ~q) ∧ ~(~p ∨ r)

≡ (p ∧ q) ∧ (p ∧ ~r)

116.

The logically equivalent statement of p ↔ q is(A) (p ∧ q) ∨ (q → p) (B) (p ∧ q) → ( p ∨ q) (C) (p → q) ∧ (q → p) (D) (p ∧ q) ∨ (p ∧ q)

Answer»

Correct option: (C) (p → q) ∧ (q → p) 

117.

The proposition (p ∧ q) ∧ (p → ~q) is (A) Contradiction (B) Tautology (C) Contingency (D) Tautology and Contradiction

Answer»

Correct option: (A) Contradiction

pq~qp ∧ qp→ ~q(p ∧ q) ∧ (p → ~q)
TTFTFF
TFTFTF
FTFFTF
FFTFTF
118.

~(~p) ↔ p is (A) a tautology (B) a contradiction (C) neither a contradiction nor a tautology (D) none of these

Answer»

Correct option: (A) a tautology

p~p~(~p)~(~p) ↔ p
TFTT
FTFT

All the entries in the last column of the above truth table is T.

∴ ~(~p)  p is a tautology.

119.

The proposition (p → q) ↔ ( ~p → ~q) is a (A) tautology (B) contradiction (C) contingency (D) none of these

Answer»

Correct option: (C) contingency 

pqp → q~p~q~p → ~q(p → q) ↔
(~p → ~q)
TTTFFTT
TFFFTTF
FTTTFFF
FFTTTTT
120.

If p is true and q is false then the truth values of (p → q) ↔ (~q → ~p) and (~p ∨ q) ∧ (~q ∨ p) are respectively (A) F, F (B) F, T (C) T, F (D) T, T

Answer»

Correct option: (C) T, F

(p → q) ↔ (~q → ~p) and (~p ∨ q) ∧ (~q ∨ p)

∴ (T → F) ↔ (~F → ~T) and (~T ∨ F) ∧ (~F ∨ T)

⇒ F ↔ (T → F) and (F ∨ F) ∧ (T ∨ T)

⇒ F ↔ F and F ∧ T ⇒ T and F

121.

If p and q have truth value ‘F’, then the truth values of (~p ∨ q) ↔ ~(p ∧ q) and ~p ↔ (p → ~q) are respectively(A) T, T (B) F, F (C) T, F (D) F, T

Answer»

Correct option: (A) T, T

(~p ∨ q) ↔ ~(p ∧ q) and ~p ↔ (p → ~q)

∴ (~F ∨ F) ↔ ~(F ∧ F) and ~F ↔ (F → ~F)

⇒ (T ∨ F) ↔ ~F and T ↔ (F → T)

⇒ T ↔ T and T ↔ T

⇒ T and T

122.

The statement (p ∧ q) → p is (A) a contradiction (B) a tautology (C) either (A) or (B) (D) a contingency

Answer»

Correct option: (B) a tautology 

pqp ∧ q(p ∧ q) → p
TTTT
TFFT
FTFT
FFFT
123.

If a: Vijay becomes a doctor, b: Ajay is an engineer. Then the statement ‘Vijay becomes a doctor if and only if Ajay is an engineer’ can be written in symbolic form as(A) b ↔ ~a (B) a ↔ b (C) a → b (D) b → a

Answer»

Correct option: (B) a ↔ b 

“if and only if” is expressed as ‘↔’

∴ symbolic form is a ↔ b.

124.

Write the duals of  (p ∨ q) ∧ (r ∨ s).

Answer»

The duals of the given statement patterns are :

(p ∧ q) ∨ (r ∧ s)

125.

If A = {1, 2, 3, 4, 5} then which of the following is not true?(a) Ǝ x ∈ A such that x + 3 = 8(b) Ǝ x ∈ A such that x + 2 < 9(c) Ǝ x ∈ A, x + 6 ≥ 9(d) Ǝ x ∈ A such that x + 6 < 10

Answer»

Option : (c) Ǝ x ∈ A, x + 6 ≥ 9

126.

Write the truth values of the following statements :√5 is an irrational but 3√5 is a complex number.

Answer»

Let p : √5 is an irrational.

q : 3√5 is a complex number.

Then,

The symbolic form of the given statement is p ∧ q.

The truth values of p and q are T and F respectively.

∴ The truth value of p ∧ q is F. … [T ∧ F ≡ F]

127.

Which of the following sentences are statements in logic? Justify. Write down the truth value of the statements :(i) 4! = 24.(ii) π is an irrational number.(iii) India is a country and Himalayas is a river.(iv) Please get me a glass of water.(v) cos2θ – sin2θ = cos2θ for all θ ∈ R.(vi) If x is a whole number the x + 6 = 0.

Answer»

(i) It is a statement which is true, hence its truth value is ‘T’.

(ii) It is a statement which is true, hence its truth value is ‘T’.

(iii) It is a statement which is false, hence its truth value is ‘F’. ….[T ∧ F ≡ F]

(iv) It is an imperative sentence, hence it is not a statement.

(v) It is a statement which is true, hence its truth value is ‘T’.

(vi) It is a statement which is false, hence its truth value is ‘F’.

128.

The negation of ‘If it is Sunday then it is a holiday’ is (A) It is a holiday but not a Sunday. (B) No Sunday then no holiday. (C) It is Sunday, but it is not a holiday, (D) No holiday therefore no Sunday.

Answer»

Correct option: (C) It is Sunday, but it is not a holiday,

p : It is Sunday

q : It is a holiday

∴ Symbolic form p → q

~ (p → q) ≡ p ∧ ~ q

i.e. It is Sunday, but it is not a holiday

129.

The negation of ‘For every natural number x, x + 5 > 4’ is (A) ∀ x ∈ N, x + 5 < 4 (B) ∀ x ∈ N, x - 5 < 4 (C) For every integer x, x + 5 < 4 (D) There exists a natural number x, for which x + 5 ≤ 4

Answer»

Correct option: (D) There exists a natural number x, for which x + 5 ≤ 4

Given statement is ‘∀ x ∈ N, x + 5 > 4’

∴ ~ [ ∀ x ∈ N, , x + 5 > 4]

≡ ∃ x ∈ N, such that x + 5 ≤ 4

i.e., there exists a natural number x, for which x + 5 ≤ 4

130.

If p : The examinations are approaching,q : Students study hard, give a verbal statement for each of the following:i. p \(\land\) \(\sim\)qii. p \(\leftrightarrow\) qiii. \(\sim\)p \(\rightarrow\) qiv. p \(\lor\) qv. \(\sim\)q \(\rightarrow\) \(\sim\)p

Answer»

i. The examinations are approaching but the students do not study hard.

ii. The examinations are approaching if and only if the students study hard.

iii. If the examinations are not approaching, then the students study hard.

iv. The examinations are approaching or the students study hard.

v. If the students do not study hard then the examinations are not approaching.