Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2751.

Value of tan10

Answer»
2752.

If sinA +cosA=x then show that sin^6A+cos^6A=4-3(x^2-1)^2/3

Answer»
2753.

Hey ANJU

Answer»
2754.

Ramshi Aditi r u online

Answer»
2755.

Aditi sirf 2 min ke liya baat karlo please

Answer»
2756.

Aditi message me??

Answer»
2757.

Aditi message toh karo whatspp pe jaldi

Answer»
2758.

Prove that cot a_cos a

Answer»
2759.

Sbke sb so gye okk byy ANJU gud ni8

Answer»
2760.

Is there anyone for time passing plzz

Answer»
2761.

Hey gud ni8 gyzzz

Answer»
2762.

Sahil me tumhara behana nhi hu

Answer»
2763.

Ramshi where r u

Answer»
2764.

Area of a Square

Answer» Side square
2765.

empirical formula

Answer»
2766.

Formuale of segment

Answer»
2767.

Draw the less than ogive and more than ogive

Answer»
2768.

2sec2a-sec4a+2cosec2a+cosec4a=cot4a-tan4a

Answer»
2769.

128x24

Answer» 3072
3072
2770.

Is it important to slove the additional exercises

Answer»
2771.

Cylindr

Answer»
2772.

Concide point

Answer» Two or more points on a point
2773.

Solve the following system of linear equations by using the method of elimination 2x-3y=7 and x+y=1?

Answer»
2774.

What is ur dream

Answer»
2775.

when is tenth cbse board final exam going to start ?

Answer» March
2776.

(CosecA-sinA) (secA-cosA) (tanA+cotA) =1

Answer» To prove:(cosecA - sinA) (secA - cosA) (tanA + cotA) = 1LHS\xa0{tex}= (\\cos ecA - \\sin A)(\\sec A - \\cos A)(\\tan A + \\cot A){/tex}{tex} = \\left( {\\frac{1}{{\\sin A}} - \\sin A} \\right)\\left( {\\frac{1}{{\\cos A}} - \\cos A} \\right)\\left( {\\frac{{\\sin A}}{{\\cos A}} + \\frac{{\\cos A}}{{\\sin A}}} \\right){/tex}\xa0{tex}\\left[ \\begin{gathered} \\because \\cos ecA = \\frac{1}{{\\sin A}},\\sec A = \\frac{1}{{\\cos A}}, \\hfill \\\\ \\tan A = \\frac{{\\sin A}}{{\\cos A}},\\cot A = \\frac{{\\cos A}}{{\\sin A}} \\hfill \\\\ \\end{gathered} \\right]{/tex}{tex} = \\left( {\\frac{{1 - {{\\sin }^2}A}}{{\\sin A}}} \\right)\\left( {\\frac{{1 - {{\\cos }^2}A}}{{\\cos A}}} \\right)\\left( {\\frac{{{{\\sin }^2}A + {{\\cos }^2}A}}{{\\cos A\\sin A}}} \\right){/tex}{tex} = \\frac{{{{\\cos }^2}A}}{{\\sin A}} \\times \\frac{{{{\\sin }^2}A}}{{\\cos A}} \\times \\frac{1}{{\\cos A\\sin A}}{/tex}\xa0{tex}\\left[ \\begin{gathered} \\because 1 - {\\sin ^2}A = {\\cos ^2}A,1 - {\\cos ^2}A = {\\sin ^2}A, \\hfill \\\\ {\\sin ^2}A + {\\cos ^2}A = 1 \\hfill \\\\ \\end{gathered} \\right]{/tex}{tex} = \\frac{{\\cos A \\times \\cos A}}{{\\sin A}} \\times \\frac{{\\sin A \\times \\sin A}}{{\\cos A}} \\times \\frac{1}{{\\cos A\\sin A}}{/tex}= 1= RHS
2777.

Show that any positive odd integer is of the form 6q+1,or6q+3,or6q+5, where q is some integer

Answer» Let a be any positive integer and b = 6∴ by Euclid’s division lemmaa = bq + r, 0≤ r and q be any integer q ≥ 0∴ a = 6q + r,where, r = 0, 1, 2, 3, 4, 5If a is even then then remainder by division of 6 is 0,2 or 4Hence r=0,2,or 4or A is of form 6q,6q+2,6q+4As, a = 6q = 2(3q), ora = 6q + 2 = 2(3q + 1), ora = 6q + 4 = 2(3q + 2).If these 3 cases a is an even integer.but if the remainder is 1,3 or 5 then r=1,3 or 5or A is of form 6q+1,,6q+3 or,6q+5Case 1:a = 6q + 1 = 2(3q) + 1 = 2n + 1,\xa0Case 2: a = 6q + 3 = 6q + 2 + 1,= 2(3q + 1) + 1 = 2n + 1,\xa0Case 3: a = 6q + 5 = 6q + 4 + 1= 2(3q + 2) + 1 = 2n + 1This shows that odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
2778.

Some important question ncert chapter 1

Answer»
2779.

Show that there is no positive integer n for which √n-1 +√n+1 is rational.

Answer»
2780.

Cot A-cosA/cotA+cosA=cosecA-1/cosecA+1

Answer»
2781.

Quize

Answer»
2782.

How to download sample paper

Answer»
2783.

Formula of rhombus

Answer» 1/2* products of its diagonals
(1/2 )×diagonal 1× diagonal 2
2784.

Hwy RIMSHA are u here

Answer»
2785.

Okay I\'m going byyyy

Answer»
2786.

Where r u RIMSHA

Answer»
2787.

RIMSHA come plzzz

Answer»
2788.

What is the ratio of volume of cube to that of the sphere which will fit inside it

Answer» Let the radius of the sphere which fits exactly into a cube be r units. The length of each edge of cube = 2r unitsLet V1 and V 2 be the volumes of the cube and sphereThen V1 = (2r)3{tex}{V_2} = \\frac{4}{3}\\pi {r^3}{/tex}{tex}\\frac{{{V_1}}}{{{V_2}}} = \\frac{{8{r^3}}}{{\\frac{4}{3}\\pi {r^3}}} = \\frac{6}{\\pi }{/tex}V1:V2\xa0{tex} = 6:\\pi {/tex}
2789.

335 and 225 real number

Answer»
2790.

135 and 225

Answer»
2791.

Hey eshaa talk to me

Answer»
2792.

if pth, qth,& rth term of an AP are a,b,c respectively, then show that a(q-r)+b(r-p)+c(p-q)

Answer» Let the first term and common difference of the AP be A and Dpth term = a ……… (given)= A + (p – 1)D = a\xa0............(1)qth term = b{tex}\\Rightarrow {/tex}\xa0A + (q - 1) D = b ......... (2)rth term = c .......... Given{tex}\\Rightarrow {/tex}\xa0A + (r - 1) D = c ........ (3)Multiplying equations (1), (2) and (3) by q - r, r - p and p - q respecitvely, we geta(q - r) + b(r - p) + c(p - q)= [A + (p - 1) D] (q - r) + [A + (q - 1)D] (r - p) + [A + (r - 1) D] (p - q)]= A [q - r + r - p + p - q] + D [(p - q)\xa0(q - r) + (q\xa0- 1) (r- p) + (r - 1) (p - q)]= A (0) + D(0)= 0
2793.

Find the area of sector of a circle of radius R /2 and angle subtended at the centre is 2p

Answer»
2794.

If sinA +sinB + sinC=3 then find the value of cosA+cosB+cosC=?

Answer»
2795.

What happened RIMSHA

Answer»
2796.

4x2_4A2X _ A4_B4

Answer»
2797.

CosA-sinA=1,prove sinA+cosA=+-1

Answer»
2798.

RIMSHA plzzz

Answer»
2799.

CotA+cosecA-1\\cotA-coseA+1=1+cosA\\1+sinA

Answer»
2800.

How many of you using fb????

Answer»