Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

38701.

Find 4 numbers in AP such that their sum is 32 and the sum of their squares is 336

Answer» Let the required number be (a - 3d), (a - d), (a + d) and (a + 3d)Sum of these numbers = (a - 3d) + (a - d)+ (a + d) + (a + 3d)According to the question, sum of the numbers=32{tex}\\therefore{/tex}4a = 32\xa0{tex}\\Rightarrow{/tex}\xa0a = 8Sum of the squares of these numbers=(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=4(a2+5d{tex}^2{/tex})Now, sum of the squares of numbers=336{tex}\\therefore{/tex}4(a2+5d2)=336{tex}\\Rightarrow{/tex}a2+5d2=84 [{tex}\\because {/tex}a=8]{tex}\\Rightarrow{/tex}5d2= 84-64{tex}\\Rightarrow{/tex}5d2=20{tex}\\Rightarrow{/tex}d2=4{tex}\\Rightarrow{/tex}d={tex} \\pm {/tex}2Hence, the required numbers (2, 6, 10, 14).
38702.

How we solve (X+2)3=x3-4

Answer» 3x+6 =3x-4;=6+4=10
38703.

Find the value of k for which the equations 2x+5y=7,3x-ky=5 has a unique solution

Answer» 2/3 not= 5/K2K not= 15 ,K not = 15/2. Sorry for previous answer of this question
For unique solution A1/A2 not equal to b1/b2Then, 2/5 not= 5/K ~2K not = 25. ~K not= 25/2. Accept 25/2 other value can be written as K.
38704.

All formula of ch-1

Answer» Which subject
38705.

5-[(1×2)+4÷2+1]

Answer» 0
0
0
6
5-(1x 2) +4/2+15-(2)+2+15-2+33+36
1
38706.

Solve the linear equation:-4/x+3y=143/x-4y=23

Answer» Ok thanx i\'ll check it
a=5 ,y=-2. Sorry for previous answer I done silly mistake of sign there so check it
Let 1/x= a then , 4/x= 4a,3/x=3a Then our equations are. 4a+3y=14 and 3a-4y= 23 by substitution method we get ,a=(14-3y)/4....(1) by putting the value of \'a\' on another eq. We get 3a-4y=23. ,3{(14-3y)/4}-4y=23 ,(42-9y-16y)/4=23. 42-25y=92 .25y=-92+42. Therefore, -y=-50/25. Y=2,. Again in eq. (1). a=(14-3y)/4 =(14-6)/4, a=8/4 =2So a =2 ,y= 2.
Guyz plz solve this ques
38707.

,If tanA=√3, find other trignometric ratiosvof A

Answer» TanA=√3/1. We know TanA=p/b Then,p=√3,b=1,h=√(√3)^2+(1)^2Therefore,h=2. SinA=p/h=√3/2,cosA=b/h=1/2,cotA=b/p=1/√3,secA=h/b=2/1,cosecA=h/p=2/√3.
38708.

Factorise-100-9x^2

Answer» 100-9x²) (10²-9x²)(10x²-3x²) (a²-b²=(a+b)(a-b) a=10&b=3x. (10+3x) (10-3x) multiply 3 by -1 to get -3 (10+3x) (10-3x)...?
100-9x^2=10^2-(3x)^2=(10+3x)(10-3x)
38709.

If sinA+coda=√3 then prove that tanA+cotA=1

Answer»
38710.

√3+√5 is not a prime number

Answer» root3 + root5 is not a rational number. (Prove this yourself)Now since root3 + root5 is not a rational number therefore it\'s not a prime number
38711.

Compartment

Answer»
38712.

how much chapterwill come in board of2018_2019

Answer» All chapters in all the books of ncert
All chapters
All the chapters will come
38713.

Solve the x /alpha +y /beta =2, ax square - by =ax-by=a square - b square by all the methods?

Answer»
38714.

Solve the x/alpha + y/beta =2, ax square - by=a square - b square by all the methods?

Answer» Please don\'t answer this question is wrong
38715.

If 8 is zero of polynomial x square - 10x +k=0, then find the value of k?

Answer» Put x=8 in f(x) we get 8square - 10×8 + k=0We get 64-80+k=0Or k=80-64=16So k=16
16 is the value of k.
f (x) = x square - 10x + kf (8) = (8×8) - (10×8) + k 64 - 80 + k = 0 -16 + k = 0 k = 16
Putting the value of = 8 so, 10X 8 +k= 0 80+ k= 0K= - 80
38716.

If roots of equation 2x²+7x+4=0are in ratio p:q then find the value of√p/q+√q/p

Answer» Yaar plz answer my both questions.???
38717.

Find the zero : h(t) =t² - 15

Answer» Sorry put t=root15 or -root15. Then see
Put x=root15 or -root15. Then see
There is no root on 15
Root15 or -root15
38718.

®2-1/3

Answer» 2/1 - 1/36/3-1/35/3
38719.

Ifx+1/x=3, find the value of x2+1/4x

Answer» Solve it
5/4
38720.

Irrational +irrational =?

Answer» "The sum of two irrational numbers is SOMETIMES irrational." The sum of two irrational numbers, in some cases, will be irrational. However, if the irrational parts of the numbers have a zero sum (cancel each other out), it will rational
irrational
Maybe rational or irrational
38721.

Send me Facebook req I will make a group on fb Fb name karan oberoi)

Answer»
38722.

1st word is 38, 16th word 73 find out 31 th word

Answer» Use APA=38D =d73 =38+(16-1)d73-38=15dD=7/3Use thisN=a+(n-1)d=38+30×7/338+70108????
108
38723.

Find the HCF of 1305,1365 by euclid division algorithim

Answer» Their HCF is 15
Nhi ata to solve kr k du
Divide kr do yr simple
38724.

Show that any positive odd integer is of the from 4q+1 or 4q+3 were q is some integer

Answer» suppose that a is any positive integer then it is divided by 4 then we get q as a quotient and r as a remainder then by euclid\'s division lemma we get that a=4q + r where 0<= 4
38725.

12+1235488

Answer» 1235500
1235500
38726.

If roots are equal then find k, 2x2-(k-1)x+8

Answer»
38727.

If 7sin ka power2+ cos ka power2 = 4, show that tan=1/3

Answer» Wrong question
38728.

8.1 ke formulae

Answer» Check formulae in notes\xa0:\xa0https://mycbseguide.com/cbse-revision-notes.html
38729.

10 application promblems related to edl

Answer»
38730.

Square of 10

Answer» 100
38731.

Sin A=a÷bFind the value of cot A

Answer» CotA=√b^2-a^2÷a
38732.

Use euclid division algorithm to find the hcf of1= 135 and 225

Answer» Not 45 it is actually (3+3)*5
45
45
38733.

Explain full ap

Answer» Arithmetic progressions
38734.

Trignomery

Answer» The most boring samajh na aay to sir ke upar
Trignometery hota hai
38735.

a³-12a(a-4)-64

Answer» a³- 12a² + 48a - 64
38736.

Find the sume of 16terms of an ap -1,-5,-9,.....

Answer» Put the formula of sum i.e. n/2 (2a + n-1) d .now by putting the value , u will get the ans. -496
38737.

if n is any prime number and a square is divisible by n . then n also divide a , justify

Answer»
38738.

If 9×5×2=529and 4×7×2=724 then find value of 3×9×8

Answer» 983
38739.

I wamt to learn substituting metod of ch 3

Answer» Substitution is the method of substituting a value of let\'s say "x" from an equation to another equation.
Ch-3 example7 pdhlo vha s smz aa jayega
Obviously in math substitution method math m hii h
From which subject??
38740.

9x^2 -9(a+b)x+(2a^2+5ab+2b^2)=0

Answer» What to do
What to di
38741.

Difference between oxidation and reduction?

Answer» OXIDATION->it means1.(adding of O2)2.(removal of H2)3.(loss of electrons).Ex-->. C+O2----->CO2,here C is getting oxidised. REDUCTION->it means 1. (removal of O2)2.(adding of H2)3.(adding/gain of electrons).Ex->CO2-->C+O2 ,here CO2 us getting reduced.
38742.

Is it necessary to write x in between the formula of rust?

Answer» Yes,because we don\'t know that how many atoms are there.
38743.

What is UPWARD PERA BOLA AND DOWNWARD PERABOLA

Answer» Upward perabola means related to value of x and downward means related to y
38744.

How can we factorise X square + 400 x - 960000

Answer» x²+400x-960000 ......................................... here,product=-960000 and sum=400.Factors=-1200 and800 .................. x²-1200x+800x-960000........... ..................... x(x-1200)+800(x-1200)............. .............. (x+800)(x-1200)=0....................... ............... x=-800or+1200
38745.

Solve: 1/x-3-1/x+5=1/6 by quadratic method

Answer» 258555
38746.

Prove that underroot 5

Answer»
38747.

if a and b are positive integers root to always lies between a/b and a-2b/a+b

Answer» We do not know whether\xa0{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b } \\text { or, } \\frac { a } { b } > \\frac { a + 2 b } { a + b }{/tex}.Therefore, to compare these two numbers, let us compute\xa0{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b }{/tex}We have,{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b } = \\frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex}\xa0{tex} = \\frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}{tex} \\therefore \\quad \\frac { a } { b } - \\frac { a + 2 b } { a + b } > 0{/tex}{tex} \\Rightarrow \\quad \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}{tex} \\Rightarrow{/tex} a2 - 2b2 > 0{tex} \\Rightarrow{/tex} a2> 2b2{tex} \\Rightarrow \\quad a > \\sqrt { 2 } b{/tex}and,\xa0{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b } < 0{/tex}{tex} \\Rightarrow \\quad \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}{tex} \\Rightarrow{/tex} a2 - 2b2 < 0{tex} \\Rightarrow{/tex}a2 <2b2{tex} \\Rightarrow \\quad a < \\sqrt { 2 } b{/tex}Thus,\xa0{tex} \\frac { a } { b } > \\frac { a + 2 b } { a + b }{/tex}, if\xa0{tex}a > \\sqrt { 2 b }{/tex}\xa0and\xa0{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b }{/tex},\xa0if\xa0{tex} a < \\sqrt { 2 } b{/tex}.So, we have the following cases:CASE I When\xa0{tex} a > \\sqrt { 2 } b{/tex}In this case, we have{tex} \\frac { a } { b } > \\frac { a + 2 b } { a + b } \\text { i.e., } \\frac { a + 2 b } { a + b } < \\frac { a } { b }{/tex}We have to prove that{tex} \\frac { a + 2 b } { a + b } < \\sqrt { 2 } < \\frac { a } { b }{/tex}We have,{tex} a > \\sqrt { 2 } b{/tex}{tex} \\Rightarrow{/tex} a2> 2b2 [Adding a2 on both sides]{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } > \\left( a ^ { 2 } + 2 b ^ { 2 } \\right) + 2 b ^ { 2 }{/tex}\xa0[Adding\xa02b2 on both sides]{tex} \\Rightarrow \\quad 2 \\left( a ^ { 2 } + b ^ { 2 } \\right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex}\xa0[Adding 4ab on both sides]{tex} \\Rightarrow \\quad 2 \\left( a ^ { 2 } + 2 a b + b ^ { 2 } \\right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } ( a + b ) > a + 2 b{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } > \\frac { a + 2 b } { a + b }{/tex} ........(i)Again,{tex} a > \\sqrt { 2 } b {/tex}{tex}\\Rightarrow \\frac { a } { b } > \\sqrt { 2 }{/tex} .......(ii)From (i) and (ii), we get{tex} \\frac { a + 2 b } { a + b } < \\sqrt { 2 } < \\frac { a } { b }{/tex}CASE II When\xa0{tex} a < \\sqrt { 2 } b{/tex}In this case, we have{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b }{/tex}We have to show that\xa0{tex} \\frac { a } { b } < \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}We have,{tex} a < \\sqrt { 2 } b{/tex}{tex} \\Rightarrow \\quad a ^ { 2 } < 2 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex}\xa0[Adding a2 on both sides]{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex}\xa0[Adding 2b2 on both sides]{tex}\\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}\xa0[Adding 4ab on both sides]{tex} \\Rightarrow \\quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}{tex} \\Rightarrow \\sqrt { 2 } ( a + b ) < a + 2 b{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}\xa0. ...(iii){tex} \\Rightarrow \\quad a < \\sqrt { 2 } b \\Rightarrow \\frac { a } { b } < \\sqrt { 2 }{/tex} ....(iv)From (iii) and (iv), we get{tex} \\frac { a } { b } < \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}Hence,\xa0{tex} \\sqrt { 2 }{/tex}\xa0lies between\xa0{tex} \\frac { a } { b }{/tex}\xa0and\xa0{tex} \\frac { a + 2 b } { a + b }{/tex}.
38748.

Kis chapter se adhik number ata hai papers mei

Answer» Mensuration ,Trigonometary, geomertyAre importantBUT YOU SHOULD TAKE WHOLE CHAPTERS AS PAPER PATTERN....
Trigonometry
Maths
38749.

If an=9-Sn write 10th term of an AP

Answer»
38750.

Traingle kai liya kuch tips doo

Answer» Triangle