Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

39201.

Prove that √2 is irrational?

Answer» Ho jaega par bra ans hai
Sorry in complete
Let.assume that root 2 is rationala and b be the positive integers where they have factors other
39202.

Additional sub ke marks math me fail me replace honge ya paas hone ke baad

Answer»
39203.

Write the quadratic polynomial having zeroes 1 and -2

Answer» x²-x-2
39204.

Ex 1.4 problem

Answer»
39205.

If the product of the two number is 18 one integer is -72 find the oher

Answer» - 0.25May be.....
39206.

Sin + cos thita=1

Answer» Sin square thita +cos square thitha =1
39207.

Prove that 2*2=(2)2 by using identiy

Answer»
39208.

Cos theta - sin theta \\cos theta +sin theta=1- under root3/1+under root 3

Answer» 60o
39209.

Sallabus of class 10

Answer» Check syllabus here :\xa0https://mycbseguide.com/cbse-syllabus.html
39210.

Two candles of equal height but different thickness are lighted.the first burns of in 6 hrs

Answer» Let height of each candle = {tex}x\\ unit.{/tex}First candle burns off in 6 hours.Second candle burns off in\xa08 hours.Height of 1st candle after burning for\xa01 hr =\xa0{tex}\\frac{x}{6}{/tex}{tex}unit{/tex}and height of 2nd candle after burning for\xa01 hr\xa0=\xa0{tex}\\frac{x}{8}{/tex}{tex}unit{/tex}Let the required time {tex}= y\\ hrs{/tex}.Length of 1st candle burnt after y hrs =\xa0{tex}\\frac{y \\times x}{6}{/tex}{tex}unit{/tex}Height of 1st candle left =\xa0{tex}\\left(x-\\frac{x y}{6}\\right){/tex}Length of 2nd candle burnt after y hrs =\xa0{tex}\\left(\\frac{y \\times x}{8}\\right){/tex}{tex}unit{/tex}Height of 2nd candle left =\xa0{tex}\\left(x-\\frac{x y}{8}\\right){/tex}According to the question,Height of 1st candle =\xa0{tex}\\frac{1}{2} \\times{/tex}Height of 2nd candle{tex}\\Rightarrow \\quad x-\\frac{x y}{6}=\\frac{1}{2}\\left(x-\\frac{x y}{8}\\right){/tex}{tex}\\Rightarrow \\quad x\\left(1-\\frac{y}{6}\\right)=\\frac{1}{2} x\\left(1-\\frac{y}{8}\\right){/tex}{tex}1-\\frac{y}{6}=\\frac{1}{2}\\left(1-\\frac{y}{8}\\right){/tex}{tex}\\Rightarrow \\quad 2-\\frac{y}{3}=1-\\frac{y}{8}{/tex}{tex}2 -1 ={/tex}\xa0{tex}\\frac{y}{3}-\\frac{y}{8}{/tex}1 =\xa0{tex}\\frac{8 y-3 y}{24}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}24 = 5y{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}y ={/tex}\xa0{tex}\\frac{24}{5}{/tex}{tex}y = 4.8 hours = 4\\ hours\\ 48\\ minutes.{/tex}
39211.

XzgejurZj??

Answer» ??????
39212.

Sin 60° cos 30°+ sin 30° cos 60°

Answer» Put the values and do the needful
1
39213.

Ramkali would need 1800 for admission fee and books etc, for her daughter to start

Answer» Since, the difference between the savings of two consecutive months is Rs.\xa020,\xa0therefore the series is an A.P.Here, the savings of the first month is Rs. 50First term, a = 50, Common difference, d = 20No. of terms = no. of monthsNo. of terms, n = 12{tex}S _ { n } = \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}{tex}= \\frac { 12 } { 2 } [ 2 \\times 50 + ( 12 - 1 ) 20 ]{/tex}= 6[100 + 220]= 6(320)= 1920After a year,\xa0Ramakali\xa0will save Rs. 1920.Yes,\xa0Ramakali\xa0will be able to fulfill her dream of sending her daughter to school.
39214.

8-2 ( 10-2 under root 5) whole under root bracket . Solve this to a square +b square

Answer»
39215.

Hcf of 196 and 38220

Answer» 195
Bro LCM is 196. .38220=196×195+0
195 is correct answer
195
It is 196 only
39216.

Express 140 as its product of prime factore

Answer» 2* 2* 5* 7 = 140
39217.

Prove:CotA - TanA +1÷CotA +TanA - 1=1+CosA÷sinA

Answer»
39218.

the numrator of a fraction

Answer»
39219.

tan a -cot a÷sin a× cos a=tan^2 a- cot^2a

Answer»
39220.

1+sin=

Answer» Cosec+1upon cosec
39221.

Prove the area of somilar triangle is proportional to the area of square present at its sides

Answer» Similar*May be it\'s typing mistake.
What is somilar
39222.

Wh what is the solution of the question is if d = HCF of 48 and 72 then find the value of D

Answer» 24 is the hcf
24
24
39223.

Evaluate Sin 60 cos 30 + sin30 cos 60

Answer» 2
Ans = 1
Sin90=Sin60Cos30+Sin30Cos60Sin90=1
sin(90_60) sin30+sin30sin(90_60)sin30sin30+sin30sin30=0
39224.

What is condition that the pair of linear equations kx+2y=5and 3x+y=1have a unique solution

Answer» According to question the given system of equations are3x + y = 1.......(1)and kx + 2y = 5..........(2)Since we know that,The given equations are of the forma1x + b1y + c1= 0 anda2x + b2y + c2 = 0has a unique solution if\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } \\neq \\frac { b _ { 1 } } { b _ { 2 } }{/tex}Thus, {tex}\\frac { 3 } { k } \\neq \\frac { 1 } { 2 } \\Rightarrow k \\neq 6{/tex}Thus, k can take any real values except 6
39225.

23564+252627-822772/2626727827177171717

Answer»
39226.

Angle

Answer»
39227.

What is completing the square

Answer»
39228.

What is nature of root

Answer»
39229.

Prove Sin90=1

Answer» 0° 30 45 60 90sin root0 root1 root2 root3 root4 Dividing all numbers by 2=sin 0÷2 1÷2 root2÷2 root3÷2 2÷2 0 1/2 1/root2 root3/2 1Understood you fool!!
39230.

determine the 2nd term and rth term of AP.whow 6th term 12 and 8th term is 22.

Answer» Given a6\xa0= 12{tex}\\Rightarrow{/tex}\xa0a + (6 - 1)d = 12{tex}\\Rightarrow{/tex}\xa0a + 5d = 12 ............(i)and, a8\xa0= 22{tex}\\Rightarrow{/tex}\xa0a + (8\xa0- 1)d = 22{tex}\\Rightarrow{/tex}\xa0a + 7d = 22 ............(ii)Subtracting equation (i) from (ii), we get(a + 7d) - (a + 5d ) = 22 - 12{tex}\\Rightarrow{/tex}\xa0a + 7d - a - 5d = 10{tex}\\Rightarrow{/tex}2d - 10{tex}\\Rightarrow \\quad d = \\frac { 10 } { 2 } = 5{/tex}Using value of d in equation (i), we geta + 5\xa0{tex}\\times{/tex}\xa05 = 12{tex}\\Rightarrow{/tex}\xa0a = 12 - 25 = -13nth term(an) = a + (n - 1)a= -13 + (n - 1)(5)= 5n - 18
39231.

if nth term of ap is 2x-1 .find sum of first n term.

Answer» Or n=?? means 1
N=1
39232.

Find largest number which divides 224 and 250 and 302 and leaves remainder 3 in each case

Answer»
39233.

If a and b are the zeros of ax2+bx+c then find a3+b3

Answer»
39234.

Check whether 15^n can end with 0 for any natural number

Answer» N
39235.

find roots of 45x+ 50

Answer» There will be 1root. X=_10/9
39236.

Find the greatest number that will divide 385, 509 and 636 leaving remainder 4, 5 and 6 respectively

Answer» Pleass frnd answer me fast please ☺?
39237.

7th class math ex=5.1 complete

Answer» this is for tenth class....
39238.

2×3+4÷5/6%

Answer»
39239.

×=2,×=6

Answer» Which ques is this??
39240.

Express the trigonometric ratios sinA secA and tanA in terms of cotA

Answer» For sin A,By using identity {tex}cosec ^ { 2 } A - \\cot ^ { 2 } A = 1 \\Rightarrow \\cos e c ^ { 2 } A = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\frac { 1 } { \\sin ^ { 2 } A } = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\sin A = \\frac { 1 } { \\sqrt { 1 + \\cot ^ { 2 } A } }{/tex}For secA,\xa0By using identity {tex}\\sec ^ { 2 } A - \\tan ^ { 2 } A = 1 \\Rightarrow \\sec ^ { 2 } A = 1 + \\tan ^ { 2 } A{/tex}{tex}\\Rightarrow \\sec ^ { 2 } A = 1 + \\frac { 1 } { \\cot ^ { 2 } A } = \\frac { \\cot ^ { 2 } A + 1 } { \\cot ^ { 2 } A } \\Rightarrow \\sec ^ { 2 } A = \\frac { 1 + \\cot ^ { 2 } A } { \\cot ^ { 2 } A }{/tex}{tex}\\Rightarrow \\sec A = \\frac { \\sqrt { 1 + \\cot ^ { 2 } A } } { \\cot A }{/tex}For tanA,{tex}\\tan A = \\frac { 1 } { \\cot A }{/tex}
39241.

Irrational number under root 5 + under root 3 prove

Answer»
39242.

Can i have maths of 10th class in hindi

Answer»
39243.

Fx3

Answer»
39244.

formula of all chapters

Answer» See in your book??????
39245.

Please give ans urgent

Answer»
39246.

Write first form of AP of a=-1,d=1/2

Answer» -1,-1/२,0,1/2.....
-1/2 and 0 and 1/2 and 1
39247.

All formula in the book

Answer» Which chapter
39248.

Which is greater 4/8 and 2/4

Answer» Both are same
Equal
Same
39249.

If i buy any sample paper from you so how i will pay money

Answer» Paytm
39250.

Pytagoras theorem

Answer» A square + b square is equal to C square in which A and B are the perpendicular sides and C is the hypotenuse
H2=B\u200b\u200b\u200b\u200b\u200b\u200b2+P2H stands for hypotenuse, B stands for base and P stands for perpendicular of the right angled triangle.
H^2 = b^2 + p^2Here,H=hypoteusb=baseAnd..p=perpendicular..
A^2=B^2+C^2Here A is hypotaneous B and C are other 2 sides of right angle triange.