InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 5451. |
The ratio in which the line 3x+4y+2=0 divides the distance between 3x+4y+5=0 and 3x+4y-5=0 is |
|
Answer» `7:3` |
|
| 5452. |
Obsereve the following the lists {:("List-I","List-II"),("A) "f(x)=x^2-2x+5" is increasing in","1) "xgt1/e),("B) "f(x)=x^x" decreases for","2) "(-oo,-1)uu(1,oo)),("C) "f(x)=x+1/x" is increasing in","3) "(1,oo)),("D) "f(x)=9-6x-2x^2-x^3" is decreasing for","4) "(-oo,oo)),("","5) "0ltxlt1/e):} |
|
Answer» `{:(A,B,C,D),(3,4,2,5):}` |
|
| 5454. |
If x = sec theta - cos theta and y = sec^(n) theta - cos^(n) theta then ((dy)/(dx))^2 is equal to |
|
Answer» `(n^2(y^2+4))/(X^2+4)` |
|
| 5455. |
If (2)/(11) is the probability of an event, what is the probability of the event 'not' A'. |
|
Answer» |
|
| 5456. |
If sintheta+sqrt(3)costhetage1 then |
|
Answer» `-(PI)/(3)lethetale(pi)/(3)` |
|
| 5457. |
The orthocentre of the triangle formed by the line x^2-3y^2=0 and the line x=a is |
|
Answer» `(a/3,0)` |
|
| 5458. |
Let f(x) be a polynomial with positive degree satisfying the relation f(x)f(y) = f(x)+ f(y) + f(xy) -2 and f(4) = 65, then |
|
Answer» `f(2)=9` |
|
| 5459. |
Find the centriod and hence find the area of the triangle formed by the following lines 12x^(2)-20xy+7y^(2)=0, 2x-3y+4=0 |
|
Answer» |
|
| 5460. |
Evaluate the following limits : Lt_(xtooo)((x^(2)+2x+3)/(2x^(2)+x+5))^((3x-2)/(3x+2)) |
|
Answer» |
|
| 5461. |
matchthe following |
|
Answer» |
|
| 5462. |
If (x + 1)(x + 2) …(x + n) = A_0 + A_1 x + ….+ A_n x^n then A_1 + 2A_2 + ….+ nA_n = |
|
Answer» `(N+1)! [1/2 + 1/3+ ....+ 1/(n + 1)]` |
|
| 5463. |
matchthe following |
|
Answer» |
|
| 5464. |
If bar(a) = bar(i) + bar(j)+bar(k), bar(b) = 2bar(i) + 3bar(j) + bar(k) then find the projection vector of bar(b) on bar(a) and its magnitude. |
|
Answer» |
|
| 5465. |
sec h^(-1)(cos theta) = |
|
Answer» `log|tan((pi)/(6) + (THETA)/(2))|` |
|
| 5466. |
2tan^(-1)(1//2)+sin^(-1)(3//5)= |
|
Answer» `TAN^(_1)(12/55)` |
|
| 5467. |
Evaluate lim_(x rarr 0) [(10^x - 2^x - 5^x + 1)/( x tanx)] |
| Answer» SOLUTION :`(log_e 2)(log_e 5)` | |
| 5468. |
Evaluate the following limits : Lim_(x to 1)(1-x^(-1//3))/(1-x^(-2//3)) |
|
Answer» |
|
| 5469. |
The two planes 2x+6y +10z-14=0,x+3y+5z+8=0 are |
|
Answer» perpendicular |
|
| 5471. |
x_1,x_2, x_3,………., x_n are n observations . sum_(i=1)^(n) (x_i- 2) = 100 " and " sum_(i=1)^(n) (x_i- 5) = 20 then mean barx = ……. |
|
Answer» `23/4` |
|
| 5472. |
Convert the following complex number in the polar form : (2+6 sqrt(3)i)/(5+ sqrt(3)i) |
|
Answer» |
|
| 5473. |
Find (dy)/(dx)if x =a ((1- t ^(2))/( 1 + t ^(2))), y = (2 bt)/(1 + t ^(2)). |
|
Answer» |
|
| 5474. |
Let f(x=sin""pi/x and D= { x : f (x) gt 0} , then D contains |
|
Answer» `(1/3, 1/2)` |
|
| 5475. |
If the controid of the tetrahedron OABC where A,B,C are the points (a,2,3), (1,b,2) and (2,1,c) be (1,2,3) and the point (a,b,c) is at distance 5sqrt(lambda) from origin, then lambda^(2) must be equal to. |
|
Answer» |
|
| 5476. |
A die is rolled. If the outcome is an odd number, what is theprobability that it is prime? |
|
Answer» |
|
| 5477. |
Consider the following sets: A = {x:x is a natural number and 1lt xle 4}B ={x:x is a natural number and 4lt x le8} Find A cup B |
| Answer» SOLUTION :`A CUP B` = {2,3,4,5,6,7,8} | |
| 5478. |
Consider the following sets: A = {x:x is a natural number and 1lt xle 4}B ={x:x is a natural number and 4lt x le8} Find P(A) |
|
Answer» <P> Solution :P(A) = {`PHI`,A,{2},{3},{4},{2,3},{2,4},{3,4}} |
|
| 5479. |
Consider the following sets: A = {x:x is a natural number and 1lt xle 4}B ={x:x is a natural number and 4lt x le8} Represent these sets on Roster form |
| Answer» SOLUTION :A = {2,3,4}, B ={5,6,7,8} | |
| 5480. |
If (cos x)/(a)=(cos(x+ theta))/(b)=(cos (x+2 theta))/(c)=(cos(x+3 theta))/(d) then (b+d)/(a+c)= |
|
Answer» d/a |
|
| 5481. |
Construct truth tables for each of the following : qimplies [(~p)vv q] |
|
Answer» [Recall that p => q is false only when p is TRUE and q is false ] |
|
| 5482. |
Let f(x)=log_(e)(x+ sqrt(x^(2)+1)), domain of f is where f(x) is defined for real values of x, If f is bijective then f^(-1)(x) exists The inverse of f is positive on |
|
Answer» `(0, OO)` |
|
| 5483. |
Let f(x)=log_(e)(x+ sqrt(x^(2)+1)), domain of f is where f(x) is defined for real values of x, If f is bijective then f^(-1)(x) exists f^(-1)(x)isdefined on |
|
Answer» `(0,OO)` |
|
| 5484. |
The perpendicular from the origin to the line y=mx+c meets it at the point (-1,2). Find the values of m and c. |
|
Answer» |
|
| 5485. |
Let R=(8+3sqrt(7))^20 and [.] denotes greatest integer function, then prove that : (a) [R] is odd(b) R-[R] =1-(1)/((8+3sqrt(7))^20 |
| Answer» | |
| 5486. |
If A is a square matrix such that A^(2)=A,then the value of A+(A-I)^(4)is: |
| Answer» Answer :C | |
| 5487. |
Find the coefficient of (ii) x^7 in the expansion of (x^(2) + (1)/(x) )^(11) |
|
Answer» |
|
| 5488. |
Fill in the blanks to make each of the following a true statement : A ∪ A′ = . . . |
|
Answer» |
|
| 5489. |
Sum of first 'n' terms of the series = (3)/(2) + (5)/(4) + (9)/(8) + (17)/( 16) + …..... = |
|
Answer» `N -1 + 2^(-n)` |
|
| 5490. |
Let a, b, c be positive number. If ax^(2) + (b)/(x) = c for all x gt 0, then that the minimum value of (ab^(2))/(c^(3)) is (4)/(27) |
|
Answer» |
|
| 5491. |
An experiment yields 3 mutually exclusive and exclusive events A, B and C . If P(A) = 2P(B) = 3 P( C ) , then P(A) is equal to |
|
Answer» |
|
| 5492. |
Evaluate the following limits : Lim_( x to 0) ((1+5x^(2))/(1+3x^(2)))^(x^(1/2)) |
|
Answer» |
|
| 5493. |
What is the probability that in a leap year chosen at random will contain 53 Sunday? |
|
Answer» |
|
| 5494. |
i) Let bara, barb and barc be non - coplanar vectors and baralpha=bara+2barb+3barc,barbeta=2bara+barb-2barc and bargamma=3bara-7barc, then find [baralphabarbetabargamma] (ii) If bara,barbbarc are non coplanar vectors, then find ((bara+2barb-barc).[(bara-barb)xx(bara-barb-barc)])/([barabarbbarc]) |
|
Answer» |
|
| 5495. |
Write the first five terms of each of the sequenceswhose n^(th)terms are: a_n = 2^n |
|
Answer» |
|
| 5496. |
Graph of inequality x - 3 lt 5 and 3x + 5 lt 2 x in Ris as follows |
|
Answer» |
|
| 5497. |
If 'x' is a negative real number then the value of Cos^(-1)x+Sec^(-1)x is |
|
Answer» RATIONAL number |
|
| 5498. |
Identify the quantifier in the following statement, For every real number x, x is less thanx + 1 |
|
Answer» |
|
| 5499. |
If cosh(x)=sec alpha then "cosech"(x)= |
| Answer» Answer :D | |
| 5500. |
Find the approximate value of sqrt(82) |
|
Answer» |
|