InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 8401. |
Express the following in the form a+bi (sqrt3 + 5i) (sqrt3 -5i)^(2) + (-4+ 5i)^(2) |
|
Answer» |
|
| 8402. |
Ifsin 2 theta + cos theta = 0"then " theta = |
|
Answer» `2 N pi - (pi)/(6), n in Z` |
|
| 8403. |
The value of tan^(-1)((x cos theta)/(1-x sin theta))-cot^(-1)((cos theta)/(x-sin theta)) is |
|
Answer» `2 THETA` |
|
| 8405. |
The orthocentre of triangle formed by lines xy+3x+3y+9 = 0 and the line 3x+4y-5=0 is |
|
Answer» (3,3) |
|
| 8406. |
If Lt_(xto0)(1+ax+bx^(2))^(2//x)=e^(3), find a and b. |
|
Answer» |
|
| 8409. |
Find the number of terms in the expansion of the following : (x+2a)^(10)+(x-2a)^(10) |
|
Answer» |
|
| 8411. |
Match the following |
|
Answer» a,C,d,b |
|
| 8412. |
Using binomial theorem, evaluate (101)^4 |
|
Answer» |
|
| 8413. |
If (d)/(dx)((1+x^(4)+x^8)/(1+x^(2)+x^(4)))=ax^(3)+bx then ……………. |
|
Answer» a=4,B=2 |
|
| 8414. |
A coin is tossed four times write the elements of sample space. |
|
Answer» |
|
| 8415. |
If y= Tan^(-1)""(sqrt(1+x^2) -1)/x then (dy)/(dx)= |
|
Answer» `1/(1+x^2)` |
|
| 8416. |
If x^(p) occurs in the expansion of (x^(2)+1/x)^(2n) then prove that its coefficient is (2n!)/((((4n-p)!)/(3!))(((2n+p)!)/(3!))) |
|
Answer» |
|
| 8417. |
If f_(n)(x)=(sinx)/(cos3x)+(sin3^2x)/(cos3^2x)+(sin3^2x)/(cos3^(3)x)+....+(sin3^(n-1)x)/(cos3^(n)x) Then f_(2)(pi//4)+f_3(pi//4)= |
|
Answer» 0 |
|
| 8418. |
If bar(AB)=2bara+barb and bar(AD) = bara-2barb " where " absbara=1, absbarb =1, (bara,barb) = 60^(@) are the adjacent sides of a parallelogram, then the length of the diagonal "bar(BD) is |
|
Answer» `SQRT13` |
|
| 8419. |
If the lengths of the sides of triangle are 3, 5, and 7, then the largest angle of the triangle is |
|
Answer» `pi/2` |
|
| 8420. |
Find the equation of parabolawith itsaxis parallelto x - axisand passing through the points (-2,1) ,(1,2) and (-1,3) . |
|
Answer» |
|
| 8421. |
Evaluate the following limits in lim_(xrarr1)(ax^(2)+bx+c)/(cx^(2)+bx+a), a+b+c ne0 |
|
Answer» |
|
| 8423. |
d/(dx)(sinh^(-1)(sqrtx)) = |
|
Answer» `1/(SQRT(1+x)).1/sqrtx` |
|
| 8425. |
The point on the parabola y =x^(2) + 7x + 2 which is elosest to the line y = 3x - 3 is |
|
Answer» |
|
| 8426. |
The locus of the point x=a+lamda^(2),y=b-lamda where lamda is a parameter is |
|
Answer» `(x-a)^(2)=b-y` |
|
| 8427. |
How many strings of length 6 can be formedusing the letter of the word FRIEND if (i) either starts with F or ends with D (ii) neither starts with F nor ends with D. |
|
Answer» |
|
| 8428. |
If X={(1,2,3,4,5} and Y={1,3,5,7,9}, then find which of the following sets are functions from X to Y? (i) R_(1)={(x,y):y=x+2, x in X, y in Y} (ii) R_(2) ={(1,2),(2,1),(3,3),(4,3), (5,3)} (iii)R_(3)={(1,1),(1,3),(3,5),(3,7),(5,7)} (iv) R_(4)={(1,3),(2,5),(4,7),(5,9),(3,1)} |
|
Answer» |
|
| 8429. |
If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of z in the complex plane |
|
Answer» |
|
| 8430. |
sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/(8)+sin^(2)(7pi)/(8)=? |
| Answer» Solution :N//A | |
| 8431. |
If f: R rarr R, f(x)= x-2, g: R rarr R, g(x)= x + 2 then (f+ g) (x)= …….. |
| Answer» Answer :C | |
| 8432. |
If f and g are differentiable functions in [0,1] satifying f(0)=2=g(1),g(0)=0 and f(1) =6 , then for some c in (0,1) |
|
Answer» G'(C ) |
|
| 8433. |
If xgt0 then the interval of monotonically increasing of f(x)=2x^(2)-logx is |
|
Answer» `(-OO,(-1)/(2))` |
|
| 8434. |
The mean deviation about mean of the observation 3, 10, 10, 4, 7, 10, 5 is |
|
Answer» 2 |
|
| 8435. |
Let barr be a vector perpendicular to bara + barb + barc . If barr=l(barbxxbarc)+m(barcxxbara)+n(baraxxbarb) then l+m+n is |
|
Answer» 0 |
|
| 8436. |
The side of triangle ABC satisfy the relation a + b - c = 2 " and " 2ab - c^(2) = 4, then square of the area of triangle is : |
| Answer» Answer :A | |
| 8437. |
log ( x )^(n) = n .log x is true for n. |
|
Answer» `AA N in N` |
|
| 8438. |
A straight line L with negative slope passes through the point (8,2) and cuts the positive coordinate axes at points P and Q. Then the absolute minimum value of OP+OQ as L varies, [where O is the origin ] is 6n, then n= |
|
Answer» |
|
| 8439. |
If f: R to [0, infty) defined by f(x) = 10^(x) then f^(-1)(x)= |
|
Answer» `log_(X)10` |
|
| 8442. |
If sin((picottheta)/(4))=cos((pitantheta)/(4)) and theta is in the first quadrant, then theta = |
|
Answer» `pi//3` |
|
| 8444. |
Evaluate C(31,26)-C(30,26) |
|
Answer» |
|
| 8445. |
If the vectors 2bar(i) + lambda bar(j) - bar(k) and 4bar(i)-2bar(j)+2bar(k) are perpendicular to each other than find lambda. |
|
Answer» |
|
| 8446. |
If the equation of the pair of straight lines passing through the point (1,1) one making an angle theta with the positive dirction of the x-axis and the other making the same angle with the positive direction of the y-axis is x^2-(a+2)xyy^2+a(x+y-1)=0, ane-2 then the value of sin2theta is |
|
Answer» a-2 |
|
| 8447. |
Let A = { a, e, i, o, u } and B = { a, i, u }. Show that A ∪ B= A |
|
Answer» |
|
| 8448. |
f:R rarr R, function f(x) is defined as f(x)= 2x +|x| then f(2x)+f(-x)-f(x) = ........... |
|
Answer» |
|
| 8449. |
Prove thatsum (r+r_1)tan ((B-C)/( 2))=0 |
| Answer» Answer :B | |
| 8450. |
A(-1,1)B(5,3) are the opposite vertices of a square. Perpendicular distance from (1,2) to the other diagonal (which is not passing through A,B) of the square is |
| Answer» Answer :C | |