InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 14601. |
Evaluate the following limits : Lt_(ntooo)(1^(3)+2^(3)+3^(3)+......+n^(3))/(n^(2)(n^(2)+1)) |
|
Answer» |
|
| 14602. |
The vector equation of the plane through the point (1,1,-1) and passing through the line of intersection of the planes barr.(bari+3barj-bark) = 0 and barr.(barj+2bark) =0 is |
|
Answer» 1)`barr.(bari+8barj+9bark) =0` |
|
| 14603. |
If r_(1)=8, r_(2)= 12r_(3)=24 then C= |
|
Answer» `(PI)/(4)` |
|
| 14604. |
If x + y = 2 pi // 3 and sin x / sin y = 2 , then the |
|
Answer» number of VALUES of `x in [0,4pi]` are 4 |
|
| 14605. |
The value of 'x' at which f(x) = cosx is stationary are given by |
|
Answer» `NPI,AAn in Z` |
|
| 14606. |
For any sets A and B, prove that : (i) (A -B) cap B=phi (ii) A cup (B-A) =A cup B (iii) (A-B) cup (AcapB)=A (iv)(A cup B) -B = A-B (v) A- (A cap B) =A-B |
|
Answer» SOLUTION :(i) `(A-B) cap B =(A cap B') cap B = A cap(B' cap B) =A cap phi =phi`. (ii) `A CUP (B-A )=A cup (B cap A') =(A cup B) cap (A cup A') =(A cup B) cap U=(A cup B)`. (iii)` (A -B) cup (A cap B) =(A capB') cup (A cap B) =A cap (B'cup B)=A cap U=A`. (IV) `A cup B) -B=(ACUP B) cap B'=(A cap B') =(A cap B') cup ( B cap B') =(A cap B') cup phi =ACAP B ' =A-B` (v) ` A - (A cap B) =A cap (A cap B) '=A cap (A'cup B' ) =(A cap A') CUP (A cap B') =phi cup (A cap B') =(A cap B') =(A-B)`. |
|
| 14607. |
sin^(-1)(sqrt(2)sin theta)+sin^(-1)(sqrt(cos 2 theta))= |
| Answer» Answer :D | |
| 14608. |
A (3,2,0), B(5,3,2), C(-9,6,-3) are three points forming a triangle then the coordinates of the point in which the bisector of angleBAC meets BC is |
|
Answer» |
|
| 14609. |
If in two circles, arcs of the same length substend angles 60^(@) and 75^(@) at the centre, find the ratio of their radii. |
|
Answer» |
|
| 14610. |
Find the derivative of the function (8^(x))/(x ^(8)) |
|
Answer» |
|
| 14611. |
If the d.c's of two lines are such that l+3m+n = 0, 3l^(2) + 5m^(2) - 4n^(2) = 0, then the angle between them is |
|
Answer» `pi//3` |
|
| 14612. |
In triangle ABC, if P, Q, R divides sides BC, AC, and AB, respectively, in the ratio k:1 (in order). If the ratio (( "area "Delta PQR)/("area " Delta ABC)) " is " 1/3 then k is equal to |
|
Answer» `1//3` |
|
| 14613. |
Find 'x' if the angle between he lines with direction ratios (x,4,5) and (2,-1,2) is 90^(@) |
|
Answer» |
|
| 14616. |
If Tan = (1)/(2), Tan B = (1)/(3) then Tan (A+B) = |
|
Answer» -1 |
|
| 14617. |
Write the component statements of the following compound statements and check whether the compound statement is true or false. A line is straight and extends indefinitely in both directions. |
| Answer» | |
| 14618. |
If length of the sides of a triangle ABC are 4 cm, 5 cm and 6 cm, O is point inside the triangle ABC such that angle OBC = angle OCA = angle OAB = theta, then value of cot theta is . |
|
Answer» `(11sqrt7)/15` |
|
| 14619. |
Let P(x) = ((1- cos 2 x + sin 2x)/(1+ cos2x + sin2x))^(2) + ((1+ cot x + cot^(2) x)/( 1+ tan x+ tan^(2) x) ), then the minimum value of P(x) equals |
|
Answer» 1 |
|
| 14620. |
Differentiate each of the following from the first principle. (i) sqrt(sinx) , (ii) sqrt(cos x) (iii) sqrt(tanx) , (iv) sqrt(cosecx) |
|
Answer» Solution :(i) Let y = `sqrt(SINX)`. Let `deltay`be an increment in y, correspondingto an increment `deltax` in X. Then, `y + deltay = sqrt(sin(x+deltax))` `rArr deltay = sqrt(sin(x+deltax))-sqrt(sinx)` `rArr (deltay)/(deltax) =(sqrt(sin(x+deltax))-sqrt(sinx))/(deltax)` `rArr (dy)/(dx) = underset(deltararr 0)("lim") (deltay)/(deltax)` `= underset(deltax rarr 0)("lim")(sqrt(sin(x+delta))-sqrt(sinx))/(deltax)` `= underset(deltax rarr 0)("lim")({sinsqrt(x+deltax)-sqrt(sinx)})/(deltax)` `= underset(deltax rarr 0)("lim")({sin(x+deltax)-sinx})/(deltax.{sqrt(sin(x+deltax))+ sqrt(sinx}})` `= underset(deltaxrarr0)("lim")(2cos(x+(delta)/(2))sin((delta)/(2)))/({sqrt(sin(x+deltax)) +sqrtsinx}deltax)`. `=underset(deltax rarr 0)("lim")cos(x+(deltax)/(2)). underset(deltax rarr 0)("lim") (sin((deltax)/2))/(((deltax)/(2)))` `underset(deltax rarr 0)("lim")1/({sqrt(sin(x+deltax)) + sqrt(sinx)])` `= {cosx.1.1/(2sqrt(sinx))} = (cosx)/(2sqrt(sinx))`. Hence, `d/(dx) (sqrt(sinx)) = (cos x)/(2sqrt(sinx))`. (ii) Let `y = sqrt(cos x)`. Let `deltay` be an increment in y, correponding to an increment `deltax` in x. Then, `y + deltay = sqrt(cos(c+deltax))` `rArr deltay = sqrt(cos(x+deltax))-sqrt(cosx)` `rArr (deltay)/(deltax) = ({sqrt(cos(x+deltax))-sqrt(cosx)})/(deltax)` `rArr (dy)/(dx)=underset(deltax rarr 0)("lim") ({sqrt(cos(x+deltax))-sqrt(cosx)})/(deltax)` `= underset(deltaxrarr0)("lim")({sqrt(cos(x+deltax))-sqrt(cosx)})/(deltax) xx ({sqrt(cos(x+deltax)) + sqrt(cosx)})/({sqrt(cos(x+deltax)) + sqrt(cosx)})` `=underset(deltaxrarr0)("lim")({cos(x+deltax) - cos x})/(deltax.{sqrt(cos(x+deltax))+ sqrt(cosx)})` `= underset(deltax rarr 0)("lim")(2SIN(x+(deltax)/(2))sin((deltax)/(2)))/(deltax.{sqrt(cos(x+deltax)) + sqrt(cosx)})` `[ :' cos C - cos D = - 2sin ((C+D)/(2)) sin((C-D)/(2))]` `=underset(deltax rarr 0)(-"lim")sin(x+(deltax)/(2)).underset(deltax rarr 0)("lim")(sin(deltax//2))/((deltax//2))`. `underset(deltax rarr 0)("lim")(1)/({sqrt(cos(x+deltax))+sqrt(cosx)})` `= (-sinx) xx 1 xx 1/(2sqrt(cosx))` Hence, `(d)/(dx) (sqrt(cosx)) =(-sinx)/(2sqrt(cosx))` (iii) Let `y = sqrt(TANX)`. Let `deltay` be an increment in y. corresponding to an increment `deltax` in x. Then, `y + deltax = sqrt(tan(x + deltax))` `rArr deltay = sqrt(tan(x+deltax)) - sqrt(tanx)` `rArr (deltay)/(deltax) = (sqrt(tan(x+deltax)) - sqrt(tanx))/(deltax)` `rArr (dy)/(dx) = underset(deltax rarr 0)("lim") (deltay)/(deltax)` `= underset(deltaxrarr0)("lim"){(sqrt(tan(x+deltax))- sqrt(tanx))/(deltax) xx (sqrt(tan(x+deltax))+sqrt(tanx))/(sqrt(tan(x+deltax))+sqrt(tanx))}` `= underset(deltaxrarr0)("lim")(tan(x+deltax)-tanx)/(deltax[sqrt(tan(x+deltax))+sqrt(tanx)])` `= underset(deltararr0)("lim")({(sin(x+deltax))/(cos(x+deltax))-(sinx)/(cosx)})/(deltax[sqrt(tan(x+deltax))+sqrt(tanx)])` `= underset(deltaxrarr0)("lim")(sin(x+deltax)cosx - cos (x+deltax) sinx)/(cos(x+deltax) cosx. deltax. [sqrt(tan(x+deltax)) + sqrt(tanx)])` `= 1/(cosx). underset(deltax rarr 0)("lim") (1)/(cos(x+deltax)) . underset(deltaxrarr0)("lim") (sindeltax)/(deltax).underset(deltararr0)("lim") (1)/((sqrt(tan(+deltax)) + sqrt(tanx)))` `= ((1)/(cosx) . (1)/(cosx)1.(1)/(2sqrt(tanx)))= (sec^(2)x)/(2sqrt(tanx))` Hence `d/(dx) (sqrt(tanx)) = (sec^(2)x)/(2sqrt(tanx))`. Let `y = sqrt(cosecx)`. Let `deltay` be an increment in y , correspondingto an increment `deltax` in x. Then, `y +deltay = sqrt(cosec(x+deltax))` `rArr deltay = sqrt(cosec(x+deltax)) - sqrt(cosecx)` `rArr (dy)/(deltax) = (sqrt(cosec(x+deltax)) - sqrt(cosecx))/(deltax)` `rArr (dy/(dx)= underset(deltax rarr 0)"lim" (dy)/(dx)` `= underset(deltax rarr 0)("lim") (sqrt(cosec(x+deltax)) - sqrt(cosecx))/(deltax)` `= underset(deltararr0)("lim")({(1)/(sqrt(sin(x+deltax))) -(1)/(sqrt(sinx))})/(deltax)` `= underset(deltaxrarr0)("lim")({sqrt(sinx)-sqrt(sin(x+deltax))})/(deltax.sqrt(sin(x+deltax)).sqrt(sinx)) xx ({sqrt(sinx) +sqrt(sin(x+deltax))})/({sqrt(sinx) + sqrt(sin(x+deltax))})` `= underset(deltararr0)("lim")({sinx-sin(x+deltax)})/({sqrt(sin(x+deltax)).sqrt(sin(x))}) xx (1)/(deltax.{sqrt(sinx) + sqrt(sin(x+deltax))})` `= underset(deltararr0)("lim")(-2cosx(x+(deltax)/(2))sin((deltax)/(2)))/({sqrt(sin(x+deltax))}.sqrt(sinx).deltax.{sqrt(sinx)+sqrt(sin(x+deltax))})` `= - underset(deltax)("lim")cos (x+(deltax)/(2)).underset(deltaxrarr0)("lim") (sin ((deltax)/(2)))/(((deltax)/(2)))` `underset(deltararr0)("lim") (1)/(sqrt(sin(x+deltax)).sqrt(sinx)).underset(deltararr0)("lim")(1)/({sqrt(sinx)+sqrt(sin(x+deltax))})` `= - cos xxx 1 xx (1)/(sqrt(sinx). sqrt(sinx)).(1)/((sqrt(sinx) +sqrt(sinx)))` `= (-cosx)/(sinx).(1)/(2sqrt(sinx)) = - 1/2 sqrt(cosecx) cot x`. Hence, `d/(dx) (sqrt(cosecx)) = - 1/2 sqrt(cosecx) cotx`. |
|
| 14621. |
An equilateral triangle is inscribed in the parabola y^(2)=4ax whose vertex is at the vertex of the parabola .Find the length of its side. |
|
Answer» |
|
| 14622. |
A =(cos 9^(@) - sin 9^(@))/(cos 9^(@) + sin 9^(@)) , B = (cos 21^(@) + sin 21^(@))/(cos21^(@) -sin21^(@)) and C= tan 20^(@) + tan40^(@) + sqrt(3)tan20^(@) tan40^(@) then descending order is: |
|
Answer» A,B,C |
|
| 14623. |
If the middle term of (1/x +x in x )^(10) is equal to7 . 7/8 , then the valueof x is . |
|
Answer» `2N pi +pi/6 , N in Z` |
|
| 14624. |
Find the equation of pair of lines intersecting at (2, -1) and Perpendicular to pair6x^(2)-13xy-5y^(2)=0 |
|
Answer» |
|
| 14625. |
Let p be '' It is cold '' and q be ''It is raining '' Give simple verbal sentence which describe the following statements.~(p^^q) |
| Answer» SOLUTION :~`(p^^q)`:It is not the CASE it is COLD and it is RAINING | |
| 14626. |
Let p be '' It is cold '' and q be ''It is raining '' Give simple verbal sentence which describe the following statements.prArr(~q) |
| Answer» SOLUTION :`prArr`(~Q): If it is COLD, then it is not RAINING. | |
| 14627. |
If sin^(2)theta gt cos^(2) theta then |
|
Answer» `NPI+(pi)/2LT THETA lt N pi +(pi)/4,, n in Z` |
|
| 14628. |
Find the area of the region bounded by the linesy=|x-1| and y=3-|x| |
|
Answer» |
|
| 14629. |
If x,y,z are in A.P, then ( sin x - sin z)/( cos z - cos x) is equal to |
|
Answer» `TAN y ` |
|
| 14630. |
Calculate the three -yearly moving averagesand display these and the originalfigures on the same graph.{:("Year ", 2001, 2002, 2003, 2004, 2005, 2006, 2007),("Values "," "20," " 40," " 50," "70," " 80," " 100," " 130):} |
|
Answer» |
|
| 14632. |
If the letters of the word ASSASSINATION are arranged at random. Find the Probability that (a) Four S's come consecutively in the word (b) Two I's and two N's come together (c ) All A's are not coming togerther (d) No two A's are coming together. |
|
Answer» |
|
| 14633. |
Find the perpendicular distance from the point (-3,4) to the straight 5x-12y=2. |
|
Answer» |
|
| 14634. |
Three cards are drawn at random from a pack of 52 cards. The probability of drawing cards which has a king, a queen and a jack is ..... |
|
Answer» `(64)/(5525)` |
|
| 14636. |
If x = sin alpha + sin beta, y = cos alpha + cos betathen tan alpha + tan beta = |
|
Answer» `(8XY)/(2 (y ^(2) - X ^(2)) + (x ^(2) + y ^(2)) (x ^(2) + y ^(2)-2 ))` |
|
| 14639. |
While shuffling a pack of 52 playing cars, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours |
|
Answer» `(29)/(52)` |
|
| 14640. |
bar(a), bar(b), bar(c) are three vectors of which every pair is non-collinear. If the vectors bar(a)+bar(b), bar(b)+bar(c) are collinear with bar(c), bar(a) respectively, then bar(a)+bar(b)+bar(c)= |
|
Answer» `BAR(a)` |
|
| 14642. |
1^(2) + 3^(2) + 5^(2) + …. upto nterms = |
|
Answer» `( n (2n-1) (2n+1))/( 6)` |
|
| 14643. |
The coefficient of variation of two distribution are 60 and 70. The standard deviations are 21 and 16 respectively, then their mean is |
|
Answer» |
|
| 14645. |
The triangle formed by the pair of lines x^(2)+16x-y^(2)=0 and x-2y+13=0 is |
|
Answer» EQUILATERAL |
|
| 14647. |
Find the multiplicative inverse of 2-3i. |
|
Answer» |
|
| 14650. |
For x in (0,pi) the equation sinx+2sin2x-sin3x=3 has |
|
Answer» INFINITELY MANY solutions |
|