InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 451. |
ABCD is a parallelogram . If L arid M and the middle points of BC and CD respec tively, then find lambda , if AM =lambda AD - LM |
|
Answer» |
|
| 452. |
If I_(1)=int_(0)^(pi//4)(tanx)^(cosx)dx, I_(2)=int_(0)^(pi//4)(cotx)^(tanx)dx I_(3)=int_(0)^(pi//4)(tanx)^(tanx)dx, I_(4)=int_(0)^(pi//4)(cotx)^(cotx)dx then |
|
Answer» `I_(1) lt I_(3)` |
|
| 453. |
dIiscuss the global maxima/minima of followingfunction in the given interval f(x) = |x^(2) - 4x +3| in [0.5]. (b) f(x) = 3x^(4) - 2x^(3)-6x^(2)+6x+1 in [0,2]. (c) f(x) = sqrt((1-x^(2))(1+2x^(2)) in [-1,1] (d) f(x)=sinxsin2x in (-infty, infty). |
|
Answer» (b) Global minima 1 and Global maxima 21. (c) Global minima 0 and Global maxima `3/sqrt8` (d) Global minima `-4/3 SQRT3` and Global maxima `4/3 sqrt3`. |
|
| 454. |
Compute the area of the region bounded by the straight lines x = 0, x = 2 and the curves y=2^(x) and y=2x-x^(2). |
|
Answer» |
|
| 455. |
A class consistsof 80 students, 25 of them are girls. If 10 of the students are rich and 20 of the studentsare fair complexioned, then the probabilityof selecting a fair complexioned rich girl from the class (assuming three traits as independent) is |
|
Answer» `(1)/(10)` |
|
| 457. |
1+(w^2x)/(1!)+(wx^2)/(1!)+(x^3)/(3!) + (w^2x^4)/(4!) +(wx^5)/(5!) +(wx^5)/(5!) +(x^6)/(6!) + .... oo = |
|
Answer» `e^x` |
|
| 458. |
If x and y are connected parametrically by the equations without eliminating the parameter, find (dy)/(dx) x=a (theta- sin theta), y= a (1 + cos theta) |
|
Answer» |
|
| 459. |
The point of intersection of the lines represented by r = (hat(i) + 2 hat(j)) + lambda[2 hat(i) + 3hat(j) + 4hat(k)] and r = (-hat(i) - 3hat(j) + 7 hat(k)) + mu(hat(i) + 2hat(j) - hat(k)) is |
|
Answer» `3HAT(i) + 5hat(J) + 3hat(K)` |
|
| 460. |
int(e^(-x))/(1+e^(x))dx=.... |
|
Answer» `LOG(1+e^(X))-x-e^(-x)+C` |
|
| 461. |
If the volume of a shpere increases at the rate of 2pi cm^3/s, then the rate of increase of its radius (in cm/s), when the volume is 288pi cm^3, is |
|
Answer» `1/36` |
|
| 462. |
If three events of a sample space are E, F and G, then P(Enn F nnG) is equal to |
|
Answer» <P>`P(E).P(F|E).P(G|Enn F)` |
|
| 463. |
The products of lengths of perpendicuylars from anypoint of hyperbola x^(2)-y^(2)=8 to its asymptotes, is |
|
Answer» 2 |
|
| 464. |
Let P, Q, R be three s on the circle x^2+y^2=25. L, M, N are points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1. PL, QM, NR are perpendicular to x-axis, with each segment not intersecting the x-axis. Further none of these points lie on coordinate axes and P, Q, R have been so chosen that area of triangle PQR is maximum. Area of triangle LMN is : (in square units) |
|
Answer» `45sqrt(3)` |
|
| 465. |
Let P, Q, R be three s on the circle x^2+y^2=25. L, M, N are points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1. PL, QM, NR are perpendicular to x-axis, with each segment not intersecting the x-axis. Further none of these points lie on coordinate axes and P, Q, R have been so chosen that area of triangle PQR is maximum. Normal to the ellipse at L, M and N are: |
|
Answer» Concurrent at a point |
|
| 466. |
Let f(x)=x^(2)-3x +4, the value of x which satisfiesf(1)+f(x)=f(1) f(x) is |
|
Answer» 1 |
|
| 468. |
If the plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α, then prove that the equation of the plane in its new position isax+by pm (sqrt(a^2+b^2)tan alpha)z=0 |
|
Answer» |
|
| 469. |
Prove that |{:(18,,40,,89),(40 ,,89,,198),( 89,, 198,,440):}| = 3 abc -a^(3) -b^(3)-c^(3) |
|
Answer» `=|{:(b+c,,-b,,a),(c+a,,-c,,b),(a+b,,-a,,c):}|"""[APPLYING "C_(2) toC_(2)-C_(3)"]"` `=|{:(c,,-b,,a),(a,,-c,,b),(b,,-a,,c):}|"""[Applying "C_(1) toC_(1)+C_(2)"]"` `=|{:(c,,a,,b),(a,,b,,c),(b,,c,,a):}|"""[INTERCHANGING " C_(2) " and "C_(3)"]"` `=3abc -a^(3)-b^(3)-c^(3)` |
|
| 470. |
int" x"^(3)sin3xdx= |
|
Answer» 1)`-(x^(3).COS3X)/3+(x^(2)sin3x)/3+(2xcos3x)/9-(2sin3x)/27+C` |
|
| 471. |
If the two circles (x - 1)^(2) + (y - 3)^(2) = r^(2) and x^(2) + y^(2) - 8x+ 2y + 8 = 0 intersect at two distinct points, then |
|
Answer» `(3sqrt(3),-5)` |
|
| 472. |
Evaluate int_(a)^(b) e^(x) dx using the definition of a definite integral as the limit of a sum. |
|
Answer» |
|
| 474. |
Express the following as trigonometric ratios of some acute angles.cot (-3888^@) |
| Answer» SOLUTION :`COT (-3888^@) = -cot 3888^@ = -cot (43 (pi)/2 + 18^@) = -(-tan 18^@) = TANT 18^@` | |
| 475. |
If thetain(0,pi/2) , then the value of : |((sintheta+"cosec"theta)^2,(sintheta-"cosec"theta)^2,1),((costheta+sectheta)^2,(costheta-sectheta)^2,1),((tantheta+cottheta)^2,(tantheta-cottheta)^2,1)|= |
|
Answer» `SIN THETA +costheta+tantheta` |
|
| 476. |
Range of the function f(x) = (x-1)^(5)/(x^(5)-1) is |
|
Answer» (1,16] |
|
| 477. |
If the cube roots of unity are 1,omega,omega^(2) then the roots of the equation (x-1)^(3)+8=0 are |
|
Answer» |
|
| 478. |
Let X and Y be sets containing m and n elements respectively.How many functions from X to Y are one-one according as m lt n, m gt n "and" m=n? |
|
Answer» Solution :If|x|=m and |y|=N then If m lt n then NUMBER of one-one functions `=""^nP_m`. If `m GT n` then number of one-one functions =0 Ifm=n then number of one-one functions `=m!` |
|
| 479. |
Find the value of t which satisfies (t-[|sinx|]!=3!5! Where [.] denotes the greatest integer function. |
|
Answer» Solution :(t-[|sin x |])!=3! 5! 7! If `x=n pi+(pi)/(2) (n in I)` then `(t-1)!=(3xx2)XX(5xx4xx3xx2)xx7!` or` (t-1)!=10xx9xx8xx7!=10!` or t-1=10 or t=11 If `x NE n pi+(pi)/(2) (n in I)`, then (t-0)!=10! Or t=10 |
|
| 480. |
Match the following : {:("Column-I","Column -II"),(" (A) " |z-6i| + |z-8|=k " will represent an ellipse for k equals to ", "(p) 2"),("(B)" ||z-12i+3|-|z-2||=k " will represent hyperbola if k equals to " , "(q) 8"),("(C)" |z=ki| + |z-4|=sqrt(10k) " will represent line segment if k equals to " , " (r) 12 "),("(D)" (z-k+2ki)/(|z-2+4i|)=k " will represent circle if k equals to " , "(s) 11"),(, "(t) 10"):} |
|
Answer» <P> |
|
| 481. |
If A=[((1)/(2)(e^(ix)+e^(-ix)),(1)/(2)(e^(ix)-e^(-ix))),((1)/(2)(e^(ix)-e^(-ix)),(1)/(2)(e^(ix)+e^(-ix)))] then A^(-1) exists |
|
Answer» for all real x |
|
| 482. |
If the plane 7x+11y+13z = 3003, meets the coordinate axes in A,B,C the the centroid of the triangle ABCis |
|
Answer» `(143,91,77)` |
|
| 483. |
For a Binomial variate X with n = 6 , if P(X= 2) = 9P(X = 4), then its veriance is , |
|
Answer» `8/9` |
|
| 484. |
The solution of (dy)/(dx) = (x^(2) + y^(2))/(xy) is |
|
Answer» `e^((x^(2))/(y^(2)) = CX` |
|
| 485. |
If plamda^(4)+qlamda^3+rlamda^2+slamda+t =|(lamda^3+3lamda,lamda-1,lamda+3),(lamda+1,2-lamda,lamda-3),(lamda-3,lamda+4,3lamda)| then t is equal to : |
|
Answer» 24 |
|
| 486. |
If the angle between overline(a) and overline(b) is (P1)/(4) and overline(c)=3overline(a)-3overline(b), then c^(2)= |
|
Answer» `9A^(2)+SQRT(2)ab+4b^(2)` |
|
| 487. |
(1 + x)^(n) = p_(0) + p_(1) x + p_(2) x^(2) + … + p_(n) x^(n), then p_(0) + p_(3) + p_(6) + ….. = |
|
Answer» `(1)/(3) [ 2^(n-1) + cos "" (n PI)/(3)]` |
|
| 489. |
In what ratio should a given line be divided into a parts so that’s the rectangle contained by them is maximum ? |
| Answer» Answer :A | |
| 490. |
Through any point (x, y) of a curve which passes through the origin, lines are drawn parallel to the coordinate axes. The curve, given that it divides the rectangle formed by the two lines and the axis into two areas, one of which is twice the other, represent a family of |
|
Answer» circles |
|
| 491. |
int(dx)/(4 cos^(3)2x-3 cos2x)=.... |
|
Answer» `(1)/(3)LOG[sec6x+tan6x]+c` |
|
| 492. |
The points A(3,6,9),B(10,20,30) and C(25,-41,5) |
|
Answer» A. are collinear |
|
| 493. |
A space vector makes the angle 150^(@) and 60^(@) with the positive direction of x and y-axes. The angle made by the vector with the positive direction of z-axis is : |
|
Answer» `60^(@)` |
|
| 494. |
Let A=[{:(1,2),(-1,3):}],B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}]and a=4, b =-2shows that : (i) A+(B+C)=(A+B)+C (ii)A*(BC)=(AB)*C (iii)(a+b)B=a*B+b*B (iv)a(C-A)=aC-aA (v)(A^(T))^(T)=A (vi) (b*A)^(T)=B^(T)=b*A^(T) (vii)(A*B)^(T)=B^(T)*A^(T) (viii)(A-B)*C=AC-BC (ix)(A-B)^(T)=A^(T)-B^(T) |
|
Answer» (ii)`=(AB)*C` `=aB+bB` (iv) `=a*C-a*A` (v) `=A` (vi) `=bA^(T)` (vii) `=B^(T)*A^(T)` (VIII) `=AC-BC` (IX) `=A^(T)-B^(T)` |
|
| 495. |
If M and N are square matrices order 3, then which one of the following statements is not true? |
|
Answer» For all symmetric matrices M and N, MN-NM is skew symmetric |
|
| 496. |
If the standard deviation of x_(1),x_(2),….,x_(n) is 3.5 then the standard deviation of -2x_(1)-3, -2x_(2)-3,….,-2x_(n)-3 is |
| Answer» Answer :C | |
| 497. |
Find the modulus and principal argument of (1 + i) and hence express it in the polar form. |
|
Answer» |
|
| 498. |
underset(0)overset(pi)int (cos^(4)x)/(cos^(4)x + sin^(4)x) dx= |
|
Answer» `(PI)/(4)` |
|
| 499. |
A(4,3,5),B(0,-2,2)and C(3,2,1) are three points .The coordinates of the pointin whichthe bisector oftriangleBAC meets the sidebar(BC) is |
|
Answer» `(15/8,4/8,11/8)` |
|
| 500. |
If x+y=1 then sum_(r=0)^(n) r^2. ^(n) C_r x^r .y^(n-r)= |
|
Answer» `N XY` |
|