Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6001.

Integrate the following functions. int(1)/(x^(3)+1)dx

Answer»


ANSWER :`(1)/(3)log|x+1|-(1)/(6)log|x^(2)-x+1|+(1)/(SQRT3)tan^(-1)`
6002.

In the group {1,2,3,4,5,6} under multiplication mod 7, 2^(-1)xx4=

Answer»

1
4
2
3

Answer :C
6003.

{:("Quantity A","Quantity B"),(2^(sqrtx),4^(3)):}

Answer»


ANSWER :QUANTITY A is GREATER.
6004.

The solutionsetof sqrt(x+20) + sqrt(x+4)=4sqrt(x-1)is

Answer»

{2}
{3}
{4}
{5}

ANSWER :D
6005.

alphaandbeta are the roots of the equationThen (alpha-(1)/(beta))and(beta-(1)/(alpha)) are the roots of the equation -

Answer»

`AX^(2)+a(B-1)^(x)+(a-1)^(2)=0`
`bx^(2)+a(b-1)^(x)+(a-1)^(2)=0`
`x^(2)+ax+b=0`
`ABX^(2)+bx+a=0`

Answer :B
6006.

In the prime factorization of 37!""=2^(alpha_(2)).3^(alpha_(3)).5^(alpha_(5)).........37^(alpha_(37)) the ratio alpha_(3):alpha_(5)=

Answer»

`3:5`
`17:8`
`5:3`
`8:21`

ANSWER :B
6007.

Find the regression coefficient of x on y from the following data: sumx=15, sumy=15, sumy^(2)=49, sumxy=44, n=5, Also find the value of x when y = 7.

Answer»


ANSWER :3, RS. 55
6008.

Integrate the following functions : x^(3)sinx^(2)

Answer»


ANSWER :`-(x^(2))/(2)COSX^(2)+(1)/(2)SINX^(2)+C`
6009.

Evaluate the following integrals. int(1)/(1+tanx)dx

Answer»


ANSWER :`(1)/(2)X+(1)/(2)log|sinx+cosx|+c`
6010.

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

Answer»


ANSWER :`pi/8log2`
6011.

(1+ sec 20^(@))(1+ sec 40^(@))(1+ sec 80^(@))=

Answer»

0
1
`-1`
2

Answer :B
6012.

Discuss the continuity of the function f given by {{:(x," if "x ge 0),(x^2," if "x lt 0):}.

Answer»


ANSWER :HENCE, F is a CONTINUOUS FUNCTION.
6013.

Find the equation of the circle with centre C and radius r where C = ((1)/(2) ,-9) ,r=5

Answer»


Answer :` 4X^(2) +4Y^(2) + 4x +72y + 225 =0`
6014.

Giventhat thesystem of equationsx=cy+bz ,y=az+cx , z=bx +ay has nonzerosolutions andand atleastone of the a,b,c is a properfraction. Systemhas solution such that

Answer»

`X,y,z -= (1-2a^(2)):(1-2b^(2)):(1-2c^(2))`
`x.y.z -= (1)/(1-2a^(2)):(1)/(1-2b^(2)):(1)/(1-2c^(2))`
`x.y.z -= (a)/(1-a^(2)):(b)/(1-b^(2)):( c)/(1-c^(2))`
`x.y.z -= sqrt(1-a^(2)):sqrt(1-b^(2)):sqrt(1-c^(2))`

Solution :Thesystemof EQUATION
`-x+cy+bz=0`
`cx-y+az=0`
`bx+ay-z=0`
has a nonzerosolution if
`Delta = |{:(-1,,c,,b),(c,,-1,,a),(b,,a,,-1):}|=0`
then CLEARLY the SYSTEMHAS infinitely manysolutions .From(1) and (2) we have
`(x)/(ac+b) =(y)/(bc+a)=(z)/(1-c^(2)) `
`" or" (x^(2))/((1-a^(2))(1-c^(2)))=(y^(2))/((1-b^(2))(1-c^(2)a)) =(z^(2))/((1-c^(2))^(2))`[From (4)]
`"or" (x^(2))/(1-a^(2))=(y^(2))/(1-b^(2)) =(z^(2))/(1-c^(2))`
from (5)we see that `1-a^(2),1-b^(2),1-c^(2)` are allpositiveor allnegative .Giventhat oneof a,b,cis properfraction so
`1-a^(2) gt ,1-b^(2) gt 0,1-c^(2) gt 0` WHICHGIVES `a^(2) +b^(2)+c^(2) lt 3`
using(4) and (6) we get
`1lt 3+2 abc`
`"or" abc gt -1`
6015.

Giventhat thesystem of equationsx=cy+bz ,y=az+cx , z=bx +ay has nonzerosolutions andand atleastone of the a,b,c is a properfraction. abc is

Answer»

`gt-1`
`gt1`
`lt2`
`lt3`

Solution :Thesystemof equation
`-x+cy+bz=0`
`cx-y+az=0`
`bx+ay-z=0`
has a nonzerosolution if
`Delta = |{:(-1,,c,,b),(c,,-1,,a),(b,,a,,-1):}|=0`
then Clearly the systemhas infinitely manysolutions .From(1) and (2) we have
`(x)/(ac+b) =(y)/(bc+a)=(z)/(1-c^(2)) `
`" or" (x^(2))/((1-a^(2))(1-c^(2)))=(y^(2))/((1-b^(2))(1-c^(2)a)) =(z^(2))/((1-c^(2))^(2))`[From (4)]
`"or" (x^(2))/(1-a^(2))=(y^(2))/(1-b^(2)) =(z^(2))/(1-c^(2))`
from (5)we see that `1-a^(2),1-b^(2),1-c^(2)` are allpositiveor allnegative .Giventhat oneof a,b,cis properfraction so
`1-a^(2) gt ,1-b^(2) gt 0,1-c^(2) gt 0` WHICHGIVES `a^(2) +b^(2)+c^(2) lt 3`
using(4) and (6) we get
`1lt 3+2 abc`
`"or" abc gt -1`
6016.

State which of the following statement is false ?

Answer»

If `A ={0,1,2,3},B={-3,-2,-1,0,1} andf:A RARR B ` is the mapping defined by `f(x)=x-3` for all `x in A`, then f is a one-one mapping
A constant mapping will be 0ne-one when its domain CONSTANS only one ELEMENT.
Functions f and g are defined as FOLLOWS:`f:RR-{2} rarrRR,` where `f(x)=(x^(2)-4)/(x-2) and g:RR rarrRR,` where`g(x)=x+2,` then`f=g`
`f(x)=sqrt(x^(2)+4x-1)` then `f(-2)` is not exist.

Answer :C
6017.

int(sin^2x)/(1+cosx)dx

Answer»

SOLUTION :`INT(sin^2x)/(1+cosx)DX=int(sin^2x(1-cosx))/(1-cos^2x)dx`
=`int(sin^2x(1-cosx))/(sin^2x)dx`
=`int(1-cosx)dx`
6018.

Giventhat thesystem of equationsx=cy+bz ,y=az+cx , z=bx +ay has nonzerosolutions andand atleastone of the a,b,c is a properfraction. a^(2)+b^(2)+c^(2) is

Answer»

` gt 2`
`gt 3`
`LT 3`
`lt2`

Solution :Thesystemof equation
`-X+cy+bz=0`
`cx-y+az=0`
`bx+ay-Z=0`
has a nonzerosolution if
`Delta = |{:(-1,,c,,b),(c,,-1,,a),(b,,a,,-1):}|=0`
then Clearly the systemhas infinitely manysolutions .From(1) and (2) we have
`(x)/(ac+b) =(y)/(bc+a)=(z)/(1-c^(2)) `
`" or" (x^(2))/((1-a^(2))(1-c^(2)))=(y^(2))/((1-b^(2))(1-c^(2)a)) =(z^(2))/((1-c^(2))^(2))`[From (4)]
`"or" (x^(2))/(1-a^(2))=(y^(2))/(1-b^(2)) =(z^(2))/(1-c^(2))`
from (5)we see that `1-a^(2),1-b^(2),1-c^(2)` are allpositiveor allnegative .Giventhat oneof a,b,cis properfraction so
`1-a^(2) gt ,1-b^(2) gt 0,1-c^(2) gt 0` whichgives `a^(2) +b^(2)+c^(2) lt 3`
using(4) and (6) we get
`1lt 3+2 ABC`
`"or" abc gt -1`
6019.

One vertex of the triangle of maximum area that can be inscribed in the curve |z-(1+i)|=2sqrt2 is -2 + 2i, then the remaining vertices are

Answer»

`((5- SQRT3)/(2))+i((1+3 sqrt3)/(2))`
`((5- sqrt3)/(2))+i((1-3 sqrt3)/(2))`
`((5+ sqrt3)/(2))+i((1-3 sqrt3)/(2))`
`((5+ sqrt3)/(2))+i((1+3 sqrt3)/(2))`

ANSWER :B::D
6020.

Integrate the functions xtan^(-1)x

Answer»


ANSWER :`(X^(2))/2TAN^(-1)x-x/2+1/2tan^(-1)x+C`
6021.

int (x^(3) - 2x^(2)+5 )e^(3x) dx.

Answer»


ANSWER :`((1)/(3) x^(3) - x^(2) + (2)/(3) x + (13)/(9) ) e^(3x) +C`.
6022.

Obtain the following integrals : int(1)/(1+cosx)dx

Answer»


ANSWER :`:.I=tan((X)/(2))+C`
6023.

IFtan ( A-B )= 1,sec (A +B )= (2)/(sqrt(3)) , thesmallest positivevalueof B is

Answer»

`(25)/(24 )pi`
`(19)/(24)pi`
`(13)/(24)pi`
NONE of these

Answer :D
6024.

If M is a 2xx2 matrix such that [(1),(-1)]=[(-1),(2)] and M^(2)[(1),(-1)]=[(1),(0)] then sum of elements of M is

Answer»

`0`
`2`
`5`
`8`

SOLUTION :Let`M=[[a,b],[c,d]]`
Now, `M [[1],[-1]] = [[-1],[2]] & M^(2) [[1],[-1]]=[[1],[0]]`
`impliesa=-1,b=0, c=4,d=2`
`THEREFORE (a+b+c+d) = 5`
6025.

Foot of perpendicular of point (2,2,2) in the plane x+y+z=9 is

Answer»

(1,1,1)
(3,3,3)
(9,0,0)
(2,6,1)

ANSWER :B
6026.

A die is thrown (2n + 1) times. The probability of getting 1 or 3 or 4 atmost n times is

Answer»

`(1)/(N)`
`(1)/(2n+1)`
`(n)/(2n+4)`
`(1)/(2)`

ANSWER :D
6027.

int (5(x^(6)+1))/(x^(2)+1)dx=....

Answer»

`5(x^(7)+x)TAN^(-1)x+c`
`x^(5)-(5)/(3)x^(3)+5x+C`
`3X^(4)-5x^(2)+15x+c`
`5 tan^(-1)(x^(2)+1)dx=.....`

ANSWER :B
6028.

Let f(x)=int_0^x (cost)/tdt Then at x=(2n+1)pi/2 f(x) has

Answer»

maxima when n=-2,-4,-6,.. and MINIMA when n=-1,3,-5,..
minima when n=-1,-3,-5,… and minima when n=1,3,5,…
minima when n=0,2,4,… and maxima when n=1,3,5,…
none of these

ANSWER :B
6029.

(sin 5 theta)/(sin theta)is equal to

Answer»

`16 cos ^(4) theta - 12 cos ^(2) theta +1`
`16cos ^(4) theta + 12 cos ^(2) theta +1`
`16cos ^(4) theta -12 cos ^(2) theta -1`
`16 cos ^(4) theta +12 cos ^(2) theta -1`

ANSWER :A
6030.

The solution set of |x+1| + |x-1| lt 2is

Answer»

`(-1,1)`
(0,1)
(-1,0)
NONE of these

Answer :D
6031.

In triangle ABCwhich of the following is not true :

Answer»

`VEC(AB)+vec(BC)+vec(CA)=vec(0)`
`vec(AB)+vec(BC)-vec(AC)=vec(0)`
`vec(AB)+vec(BC)-vec(AC)=VEC0`
`vec(AB)-vec(CB)+vec(CA)=vec(0)`

ANSWER :C
6032.

A(x_(1),y_(1)) and B(x_(2),y_(2)) are any two distinct points on the parabola y=ax^(2) +bx+c.if P(x_(3),y_(3)) be the point on the are AB where the tangent is parallel to the chord AB, then

Answer»

<P>`x_(3)` is the A.M. between `x_(1)` and `x_(2)`
`x_(3)` is the G.M. between `x_(1)` and `x_(2)`
`x_(3)` is the H.M. between `x_(1)` and `x_(2)`
None of these

Solution :Slope of tangent at P at
`(x_(3),y_(3))=2ax_(3)+b=(x_(2)-y_(1))/(x_(2)-x_(1))[given]...(1)`
`{As the tangent is (y+y_(3))/(2)=ax x_(3) +b((x+x_(3))/(2))+c}`
`because` A and B LIE on the parabola,
` THEREFORE y_(1) = ax_(1)^(2)+bx_(1)+c...(i)` and
`y_(2)=ax_(2)^(2)+bx_(2)+c....(ii)`
`therefore y_(1)-y_(2) = [a(x_(1)+x_(2))(x_(1)-x_(2))+b(x_(1)+x_(2))]`
`therefore (y_(2)-y_(1))/(x_(2)-x_(1))=a(x_(1)+x_(2))+b`
`therefore "from" (1), a(x_(1)+x_(2))+b=2ax_(3)+b`
`(x_(1)+x_(2))/(2)=x_(3)`
6033.

Find values of k if area of triangle is 4 sq. units and vertices are (2,2), (6,6) and (5,k).

Answer»


ANSWER :7,3
6034.

An open box with square base is to be made of a given quantity of card board of area c^(2). Show that the maximum volume of the box is (c^(3))/(6sqrt(3)) cubic units.

Answer»


ANSWER :`= (C^(3))/(6sqrt(3))("UNIT")^(3)`
6035.

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(2logsinx-logsin2x)dx

Answer»


ANSWER :`pi/2log1/2`
6036.

Find the equation of the circle with its centre at (3, 2) and which touches to the line x+2y-4=0.

Answer»

Solution :`ABS(bar(PC))=abs((ax_1+by_1+c)/SQRT(a^2+b^2))`
= `(1 XX 3 + 2 xx 2 - 4)/sqrt(1^2+2^2) = 3/sqrt5` = radius
`therefore` Equation of the CIRCLE is
`(x-h)^2+(y-k)^2=a^2`
or, `(x-3)^2+(y-2)^2=9/5`
6037.

sin((pi)/3-"sin"^(-1)(-1/2)) is equal to

Answer»

`1/2`
`1/3`
`1/4`
1

Answer :D
6038.

Find the values of the following correct to five decimals. (1)/(root(3)(128))

Answer»


SOLUTION :N/A
6039.

Find the middle term(s) in the expansionof n in N (x sqrt(x) -(2)/(x))^(15)

Answer»


SOLUTION :N/A
6040.

int_(0)^((pi)/(2))(sin^(2)x)/(sin x + cos x) dx =

Answer»

`(3)/(SQRT(2))LOG (sqrt(2) + 1)^((1)/(2))`
`(1)/(sqrt(2))log (sqrt(2) + 1)`
`(sqrt(2))/(3)log (sqrt(3) + 1)`
`(sqrt(2))/(3)log (sqrt(2) - 1)`

Answer :B
6041.

Solve (x^(2)+(1)/(x^(2)))-5(x+(1)/(x))+6=0," when "x ne0

Answer»

`{2+-(SQRT(3) )/( 2)}`
` {2,-1/2,(1+I sqrt(3))/(2)}`
`{-2+- sqrt(3) , (1+I sqrt(3))/(2)}`
none

Answer :A
6042.

A letter is known to have come either from 'TATANAGAR' or 'CALCUTTA' . On the envelope. Just two consecutive letter TA are visible . The probability that the letters comes from 'TATA NAGAR' is

Answer»

`(4)/(11)`
`(7)/(11)`
`(5)/(11)`
`(6)/(11)`

ANSWER :B
6043.

Let f(x){:(=x^(2),","" when "xlt1),(=1,",""when"xle1):} Draw the graph of the function f (x) and evaluateunderset(xrarr1)"lim"f(x).

Answer»


ANSWER :1
6044.

If A = (1,2),B = ( 3 ,-2 ) and P moves in the plane such that AP + BP = 7 ,then the locus of P has two axes of symmetry. Their equations are :

Answer»

x-2y+3=0, 2x+y=4
2x+y=4, x-2y=2
x-2y=2, x-y+1=0
x-2y=7, 2x+y=4

Answer :B
6045.

The points on the curve 9y^(2)=x^(3), where the normal to the curve makes equal intercepts with the axes are ………..

Answer»

`(-4, -(8)/(3))`
`(4, PM(8)/(3))`
`(PM4, (8)/(3))`
`(8, (8)/(3))`

Answer :B
6046.

If cos(theta - theta_(1)) =1/(2sqrt(3)) and sin(theta-theta_(2))=1/(3sqrt(2)), where 0 lt theta - theta_(1), theta-theta_(2) lt pi/2, then the value of 108/5{ cos^(2) (theta_(1)-theta_(2)) + sqrt(6)/18 sin(theta_(1)-theta_(2))} is …………..

Answer»


ANSWER :3
6047.

The parabola y= (1)/(2)x^(2) divides the circle x^(2) + y^(2)=8 into two parts find the area of each part.

Answer»


Answer :`2PI + (4)/(3)` SQ units and `6PI- (4)/(3)` sq units.
6048.

If the ecentricity of a hyperbola is sqrt3 then the ecentricity of its conjugate hyperbola is

Answer»

`sqrt2`
`SQRT3`
`SQRT(3//2)`
`2sqrt3`

Answer :C
6049.

A is the set of the first five positive odd integers . B is the set of the first five positions even integers. {:("Quantity A","Quantity B"),("The standard deviation of A","The standard deviation of B"):}

Answer»


ANSWER :The TWO QUANTITIES are EQUAL.
6050.

Compute {:(" Lt"),(xrarroo):}(x^(2)+5x+2)/(2x^(2)-5x+1)

Answer»


ANSWER :`(1)/(2)`