Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7201.

Evaluate the following integrals int sqrtx (3x^2+2x+3) dx

Answer»

Solution :`int sqrtx (3X^2+2x+3)dx = int(3x^(1/2) X^2 + 2 x^(1/2)x +3 x^(1/2)) dx`
=`int(3x^(5/2) +2x^(3/2) +3x^(1/2)) dx = (3x^(5/2+1))/(5/2+1) + (2x^(3/2+1))/(3/2+1) + (3x^(1/2+1))/(1/2+1) +c = 6/7 x^(7/2) +4/5 x^(5/2) +2x^(5/2) +c`
7202.

Evaluate int_0^(pi/2) cos2xdx

Answer»

Solution :`int_0^(pi/2) COS2X dx = ((sin2x)/2)_0^(pi/2)`
`=1/2 (SIN pi-sin 0) = 0`
7203.

The maximum value of 7e|xlogx| for 0ltxle1 is-

Answer»


ANSWER :7
7204.

Differntiate the following functions by proper substitution.tan^(-1)[(2x)/(1-x^2)]

Answer»

Solution :`y=TAN^(-1)frac(2x)(1-X^2)`[Put x=`tan THETA`
`=tan^(-1)frac(2tantheta)(1-tan^2theta)=tan^(-1)(tan2theta)`
`2theta=2tan^(-1)x`
`dy/dx=2/(1+x^2)`
7205.

If z=costheta+isintheta, then (z^(2n)-1)/(z^(2n)+1)

Answer»

`COS n theta`
`SIN n theta`
`-i sin" "n" "theta`
`itan" "n" "theta`

ANSWER :D
7206.

int_(0)^(pi//2) " cosec "(x-(pi)/(3)) " cosec "(x-(pi)/(6)) dx=?

Answer»

`-LOG 3`
`-2 log 3`
`2 log 3`

ANSWER :C
7207.

Figure shows x-t graph of a particle in rectilinear motion.Mark the correct statement(s) about the velocity in the respective region :

Answer»

AB is negative
OA is POSITIVE
OA is increasing
OAB is decreasing

7208.

Equation of circle with centre (-a, -b) and radius sqrt(a^(2) - b^(2)) is

Answer»

`X^(2) + y^(2) + 2ax + 2by + 2B^(2) = 0`
`x^(2) + y^(2) - 2ax - 2by - 2b^(2) = 0`
`x^(2) + y^(2) - 2ax - 2by + 2b^(2) = 0`
`x^(2) + y^(2) - 2ax + 2by + 2a^(2) = 0`

ANSWER :A
7209.

If alpha is a root of z^(2) - z +1 = 0, then (alpha^(2014)+ (1)/(alpha^(2014)))+ (alpha^(2015+(1)/(alpha^(2015))))^(2) +(alpha^(2016)+(1)/(alpha^2016))^(3)+ (alpha^(2017)+ (1)/(alpha^(2017)))^(4)+ (alpha^(2018)+(1)/(alpha^(2018)))^(5)=

Answer»

8
5
3
-5

Answer :A
7210.

cot[sum_(n=3)^32cot^-1(1+sum_(k=1)^n2K)]=

Answer»

`10/3`
`8/3`
`14/3`
`16/3`

ANSWER :A
7211.

Find area enclosed by |y|=1-x^(2).

Answer»


ANSWER :`(8)/(3)`
7212.

If the difference between the roots of x^(2) + ax + 1 = 0 is Jess than sqrt(5) then the set of possible values of a is

Answer»

`(3, oo)`
`(-oo, -3)`
`(-3, -2) UU (2, 3)`
`(-3 , oo)`

Answer :C
7213.

If (x+1)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1), then find the principal value of sin^(-1)(A/B).

Answer»


ANSWER :`- pi/2`
7214.

The numerical value of middle terms in (1 - 1/x)^n (1 - x)^n is

Answer»

`""^(2N)C_n`
`""^nC_n`
`-(""^(2n)C_n) `
`- (""^nC_n)`

ANSWER :A
7215.

Find the number of +ve integers which are less than 10^8 and 3 occurs exactly once.

Answer»


ANSWER :`8xx9^7`
7216.

which of the following compound(s) give smlling product having anesthetic use in presence of Cl_(2),NaOH,Delta.

Answer»


`CH_(3)-UNDERSET(I)underset(|)CH-CH_(3)`
`CH_(3)-OVERSET(O)overset(||)C-OH`
`Ph-overset(O)overset(||)C-CH_(3)`

SOLUTION :
7217.

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0represents parallel lines then

Answer»

`sqrt(G^(2)-AC)/(H^(2)+a^(2))`
`sqrt(g^(2)-ac)/(h^(2)+a^(2))`
`2sqrt(g^(2)-ac)/(a(a+b))`
`sqrt(g^(2)+ac)/(a(a+b))`

ANSWER :C
7218.

Let A and B be two sets containing 2 elements and 4 elements respectively the number of subsets of A xx B having 3 or more elements is

Answer»

219
256
275
510

Answer :A
7219.

Match the columns and choose the correct answer.

Answer»

`{:(,,A,B,C,D),(,a,1,2,3,4):}`
`{:(,,A,B,C,D),(,b,3,5,5,1):}`
`{:(,,A,B,C,D),(,c,3,5,2,1):}`
`{:(,,A,B,C,D),(,d,3,2,1,5):}`

ANSWER :C
7220.

(d)/(d x ) { log (sqrt(1 +x )+ sqrt( 1 -x ))/(sqrt(1 + x ) - sqrt(1-x ))}=

Answer»

`(1)/(X sqrt( 1 -x^(2)))`
`(-1)/(sqrt( 1 -x^(2)))`
`(-1)/(xsqrt( 1 -x^(2)))`
NONE

Answer :D
7221.

Determine the differentials in each of the following cases. x^2y = 2

Answer»

SOLUTION :`x^2y = 2`
`RARR y = 2/x^2`
`DY = - 4/x^3 DX`
7222.

Let A=[[2,4],[3,2]] , B=[[1,3],[-2,5]] , C=[[-2,5],[3,4]] Find each of the folowing 3A-C

Answer»

SOLUTION :`3A-C=[[6,12],[9,6]]-[[-2,5],[3,4]]=[[6+2,12-5],[9-3,6-4]]=[[8,7],[6,2]]`
7223.

Evaluate the following integrals : int_(pi/6)^(pi/2)(cosecx.cotx)/(1+cosec^(2)x)dx

Answer»


ANSWER :`TAN^(-1)""(1)/(3)`
7224.

Given g(x) (x+2)/(x-1) and the line 3x+y-10=0. Then the line is

Answer»

tangent to G(X)
normal to g(x)
chord ofg(x)
NONE of these

ANSWER :A
7225.

The sum of the series 1/(2!) - 1/(3!) + 1/(4!) - …….. upto infinity is

Answer»

`E^((-1)/2)`
`e^(1/2)`
`e^(-2)`
`e^(-1)`

ANSWER :D
7226.

Find the value of the integral underset(0)overset(a) int x(a^(2)-x^(2))^(7/2) dx

Answer»


ANSWER :`(a^(9))/(9)`
7227.

A plane is passing through (1,0,0) and (0,1,0) and it makes and angle (pi)/(4) with x+y = 3. The direction rations of this plane are ............

Answer»

`(1, SQRT(2), 1)`
`(1,1,sqrt(2))`
`(1,1,2)`
`(sqrt(2),1,1)`

ANSWER :B
7228.

Find the principle value of the followingtan^(-1)(-1)

Answer»

SOLUTION :`TAN (-pi/4)=-tanfracpi4=-1`and`-pi/4 in(-pi/2,pi/2)`
Therefore, the principal value of `tan ^(-1) (-1)=(-1)=-pi/4^cdot`
7229.

Integrate thefunction in Exercise. (2cos x-3 sin x)/(6 cosx+4 sin x)

Answer»


ANSWER :`(1)/(2) log|2 SIN x+3 COS x|+c`
7230.

Given, the angles A, B and C of triangleABC. Let M be the mid-point of segment AB and let D be the foot of the bisector of angleC. Find the ratio of (Area Of triangleCDM)/(Area of triangleABC) and also cosphi=cosangleDCM.

Answer»


ANSWER :`(sinA-sinB)/(2(sinA+sinB))`
7231.

Let a,r,s,t be non-zero real numbers. Let P (at^(2), 2at),Q R(ar^(2), 2ar) and S (as^(2), 2as) be distinct point on the parabola y^(2) = 4ax. Suppose the PQ si the focal chord and line QR and PK are parallel, where K is point (2a, 0) It st = 1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

Answer»

`((t^(2) + 1)^(2))/(2T^(3))`
`(a(t^(2) + 1)^(2))/(2t^(3))`
`(a(t^(2) + 1)^(2))/(t^(3))`
`(a(t^(2) + 2)^(2))/(t^(3))`

SOLUTION :PLAN EQUATION of tangent and NORMAL at `(at^(2), 2at)` are given by `ty = x + at^(2)` and `y + tx = 2a + at^(3)`, respectively.
Tangent at `P + ty = x + at^(2)` or `y = (x)/(t) + at`
Normal at `S : y (x)/(t) = (2a)/(t) + (a)/(t^(3))`
Solving `2y = at + (2a)/(t) + (a)/(t^(3)) implies y = (a(t^(3) + 1)^(2))/(2t^(3))`
7232.

Integrate the functions in exercise. (x^(2))/(1-x^(6))

Answer»


ANSWER :`I=(1)/(6)log|(1+x^(3))/(1-x^(3))|+C`
7233.

Find the number of words of arranging the letters of the word 'MISSING' which do not begin with 'S'.

Answer»


ANSWER :900
7234.

If A(5,-4) and B(7,6) are points in a plane, then the set of all points P(x,y) in the plane such that AP:PB=2:3 is .

Answer»

a CIRCLE
a HYPERBOLA
an ELLIPSE
a PARABOLA

ANSWER :A
7235.

If one root of the equation x^(2)+px+12=0 is 4, while the equation x^(2)+px+q=0 has equal roots, then the value of q is

Answer»

`4`
`12`
`3`
`(49)/(4)`

ANSWER :D
7236.

The sum sum_(i=0)^(m)((10)/(i))((20)/(m-i)) is maximum when m is

Answer»

5
10
15
20

Answer :C
7237.

The integral int (dx)/(x^(2)(x^(4)+1)^(3//4)) equals

Answer»

`((x^(4)+1)/(x^(4)))^(1//4)+c`
`-((x^(4)+1)/(x^(4)))^(1//4)+c`
`1+(1)/(x^(4))+c`
`x^(4)+1+c`

ANSWER :2
7238.

We have f (x) lim_(n to oo)cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))…… ….cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo)sum_(k=1)^(n)tan ((x)/(2^(k))) equals

Answer»

`(1)/(x - TAN x`
`(1)/(x) - COT x`
`x + cot x`
`x + tan x`

ANSWER :B
7239.

We have f (x) lim_(n to oo)cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))…… ….cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) sum_(k=1)^(n)(1)/(2^(2k)) sec^(2) ((x)/(2^(k))) equals

Answer»

`COSEC^(2) X - (1)/(x^(2))`
`cosec^(2) x + (1)/(x^(2))`
`cosec^(2) x - x^(2)`
`cosec^(2) x+ x^(2)`

ANSWER :A
7240.

The solution of the differential equation (dy)/(dx)+(y)/(x)=(1)/((1+lnx+lny)^(2)) is (where, c is an arbitrary constant)

Answer»

`XY[1+(ln(xy)^(2))]=(X^(2))/(2)+c`
`1+(ln(xy))^(2)=(x^(2))/(2)+y+c`
`xy(1+ln(xy))=(x^(2))/(2)+c`
`xy(1+ln(xy))=(x)/(2)+c`

Answer :A
7241.

If a, b and c are in geometric progression and the roots of the equation ax^(2) + 2bx + c = 0 are alpha and beta and those of cx^(2) + 2bx + a = 0 are gamma and delta

Answer»

`ALPHA != BETA != GAMMA != delta`
`alpha != beta and gamma != delta`
`a alpha = a beta and c gamma = c delta`
`alpha = beta and gamma = delta`

ANSWER :C
7242.

If (sinalpha+icosalpha)^4(cos2alpha-isin2alpha)^(-2)=costheta+isintheta," then "theta=

Answer»

0
`4alpha`
`6alpha`
`5alpha`

ANSWER :A
7243.

Find the approximate value of f(5.001), where f(x)=x^(3)-7x^(2)+15.

Answer»


ANSWER :`=-34.995`
7244.

Evaluate int tan^(6) x dx

Answer»


ANSWER :`(TAN^(5))/(5)-(tan^3)/(3)+tanx+c`
7245.

Differentiate the functions given in Exercises 1 to 11 w.r.t. x. ( x)^(cos x)

Answer»
7246.

Find the area bounded by the curves (x -1)^(2) + y^(2) = 1 and x^(2) + y^(2) = 1.

Answer»


ANSWER :`((2PI)/(3) -sqrt3/2)`
7247.

Let S = {a_1, a_2,…... a_n} where a_1, a_2………, a_n are nonzero real numbers. If the number of ordered pairs(a_(i),a_(j)),with i < j such that a_(i)a_(j) gt 0is 99 and the number of ordered pairs (a_(i),a_(j)) with i lt jsuch that a_(i)a_(j) lt 0is 91, then n is equal to

Answer»

11
13
20
18

Answer :C
7248.

Integrate the following int(x)/(sqrt(x^2-a^2)dx

Answer»

Solution :`INT(X)/sqrt(x^2-a^2)dx
[ put `x^2-a^2=t^2` then 2xdx=2tdt or xdx=tdt]
`int(tdt)/t=intdt=t+C
`sqrt(x^2-a^2)+C`
7249.

If O is origin and affixes of P, Q, R are respectively z, iz, z + iz. Locate the points on complex plane. If DeltaPQR = 200then find sides of quadrilateral OPRQ

Answer»


ANSWER :`OP=OQ=PR=QR=20`
7250.

int sqrt(tan x)dx

Answer»


ANSWER :`(1)/(sqrt(2))log|(sinx+cos X)+ sqrt(2 sinx+cosx)|+C`