InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 7201. |
Evaluate the following integrals int sqrtx (3x^2+2x+3) dx |
|
Answer» Solution :`int sqrtx (3X^2+2x+3)dx = int(3x^(1/2) X^2 + 2 x^(1/2)x +3 x^(1/2)) dx` =`int(3x^(5/2) +2x^(3/2) +3x^(1/2)) dx = (3x^(5/2+1))/(5/2+1) + (2x^(3/2+1))/(3/2+1) + (3x^(1/2+1))/(1/2+1) +c = 6/7 x^(7/2) +4/5 x^(5/2) +2x^(5/2) +c` |
|
| 7202. |
Evaluate int_0^(pi/2) cos2xdx |
|
Answer» Solution :`int_0^(pi/2) COS2X dx = ((sin2x)/2)_0^(pi/2)` `=1/2 (SIN pi-sin 0) = 0` |
|
| 7204. |
Differntiate the following functions by proper substitution.tan^(-1)[(2x)/(1-x^2)] |
|
Answer» Solution :`y=TAN^(-1)frac(2x)(1-X^2)`[Put x=`tan THETA` `=tan^(-1)frac(2tantheta)(1-tan^2theta)=tan^(-1)(tan2theta)` `2theta=2tan^(-1)x` `dy/dx=2/(1+x^2)` |
|
| 7205. |
If z=costheta+isintheta, then (z^(2n)-1)/(z^(2n)+1) |
|
Answer» `COS n theta` |
|
| 7207. |
Figure shows x-t graph of a particle in rectilinear motion.Mark the correct statement(s) about the velocity in the respective region : |
|
Answer» AB is negative |
|
| 7208. |
Equation of circle with centre (-a, -b) and radius sqrt(a^(2) - b^(2)) is |
|
Answer» `X^(2) + y^(2) + 2ax + 2by + 2B^(2) = 0` |
|
| 7209. |
If alpha is a root of z^(2) - z +1 = 0, then (alpha^(2014)+ (1)/(alpha^(2014)))+ (alpha^(2015+(1)/(alpha^(2015))))^(2) +(alpha^(2016)+(1)/(alpha^2016))^(3)+ (alpha^(2017)+ (1)/(alpha^(2017)))^(4)+ (alpha^(2018)+(1)/(alpha^(2018)))^(5)= |
|
Answer» 8 |
|
| 7210. |
cot[sum_(n=3)^32cot^-1(1+sum_(k=1)^n2K)]= |
|
Answer» `10/3` |
|
| 7212. |
If the difference between the roots of x^(2) + ax + 1 = 0 is Jess than sqrt(5) then the set of possible values of a is |
| Answer» Answer :C | |
| 7213. |
If (x+1)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1), then find the principal value of sin^(-1)(A/B). |
|
Answer» |
|
| 7214. |
The numerical value of middle terms in (1 - 1/x)^n (1 - x)^n is |
|
Answer» `""^(2N)C_n` |
|
| 7215. |
Find the number of +ve integers which are less than 10^8 and 3 occurs exactly once. |
|
Answer» |
|
| 7216. |
which of the following compound(s) give smlling product having anesthetic use in presence of Cl_(2),NaOH,Delta. |
|
Answer»
|
|
| 7217. |
If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0represents parallel lines then |
|
Answer» `sqrt(G^(2)-AC)/(H^(2)+a^(2))` |
|
| 7218. |
Let A and B be two sets containing 2 elements and 4 elements respectively the number of subsets of A xx B having 3 or more elements is |
|
Answer» 219 |
|
| 7219. |
Match the columns and choose the correct answer. |
|
Answer» `{:(,,A,B,C,D),(,a,1,2,3,4):}` |
|
| 7220. |
(d)/(d x ) { log (sqrt(1 +x )+ sqrt( 1 -x ))/(sqrt(1 + x ) - sqrt(1-x ))}= |
|
Answer» `(1)/(X sqrt( 1 -x^(2)))` |
|
| 7221. |
Determine the differentials in each of the following cases. x^2y = 2 |
|
Answer» SOLUTION :`x^2y = 2` `RARR y = 2/x^2` `DY = - 4/x^3 DX` |
|
| 7222. |
Let A=[[2,4],[3,2]] , B=[[1,3],[-2,5]] , C=[[-2,5],[3,4]] Find each of the folowing 3A-C |
| Answer» SOLUTION :`3A-C=[[6,12],[9,6]]-[[-2,5],[3,4]]=[[6+2,12-5],[9-3,6-4]]=[[8,7],[6,2]]` | |
| 7223. |
Evaluate the following integrals : int_(pi/6)^(pi/2)(cosecx.cotx)/(1+cosec^(2)x)dx |
|
Answer» |
|
| 7224. |
Given g(x) (x+2)/(x-1) and the line 3x+y-10=0. Then the line is |
|
Answer» tangent to G(X) |
|
| 7225. |
The sum of the series 1/(2!) - 1/(3!) + 1/(4!) - …….. upto infinity is |
|
Answer» `E^((-1)/2)` |
|
| 7226. |
Find the value of the integral underset(0)overset(a) int x(a^(2)-x^(2))^(7/2) dx |
|
Answer» |
|
| 7227. |
A plane is passing through (1,0,0) and (0,1,0) and it makes and angle (pi)/(4) with x+y = 3. The direction rations of this plane are ............ |
|
Answer» `(1, SQRT(2), 1)` |
|
| 7228. |
Find the principle value of the followingtan^(-1)(-1) |
|
Answer» SOLUTION :`TAN (-pi/4)=-tanfracpi4=-1`and`-pi/4 in(-pi/2,pi/2)` Therefore, the principal value of `tan ^(-1) (-1)=(-1)=-pi/4^cdot` |
|
| 7229. |
Integrate thefunction in Exercise. (2cos x-3 sin x)/(6 cosx+4 sin x) |
|
Answer» |
|
| 7230. |
Given, the angles A, B and C of triangleABC. Let M be the mid-point of segment AB and let D be the foot of the bisector of angleC. Find the ratio of (Area Of triangleCDM)/(Area of triangleABC) and also cosphi=cosangleDCM. |
|
Answer» |
|
| 7231. |
Let a,r,s,t be non-zero real numbers. Let P (at^(2), 2at),Q R(ar^(2), 2ar) and S (as^(2), 2as) be distinct point on the parabola y^(2) = 4ax. Suppose the PQ si the focal chord and line QR and PK are parallel, where K is point (2a, 0) It st = 1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is |
|
Answer» `((t^(2) + 1)^(2))/(2T^(3))` Tangent at `P + ty = x + at^(2)` or `y = (x)/(t) + at` Normal at `S : y (x)/(t) = (2a)/(t) + (a)/(t^(3))` Solving `2y = at + (2a)/(t) + (a)/(t^(3)) implies y = (a(t^(3) + 1)^(2))/(2t^(3))` |
|
| 7232. |
Integrate the functions in exercise. (x^(2))/(1-x^(6)) |
|
Answer» |
|
| 7233. |
Find the number of words of arranging the letters of the word 'MISSING' which do not begin with 'S'. |
|
Answer» |
|
| 7234. |
If A(5,-4) and B(7,6) are points in a plane, then the set of all points P(x,y) in the plane such that AP:PB=2:3 is . |
|
Answer» a CIRCLE |
|
| 7235. |
If one root of the equation x^(2)+px+12=0 is 4, while the equation x^(2)+px+q=0 has equal roots, then the value of q is |
| Answer» ANSWER :D | |
| 7236. |
The sum sum_(i=0)^(m)((10)/(i))((20)/(m-i)) is maximum when m is |
|
Answer» 5 |
|
| 7237. |
The integral int (dx)/(x^(2)(x^(4)+1)^(3//4)) equals |
|
Answer» `((x^(4)+1)/(x^(4)))^(1//4)+c` |
|
| 7238. |
We have f (x) lim_(n to oo)cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))…… ….cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo)sum_(k=1)^(n)tan ((x)/(2^(k))) equals |
|
Answer» `(1)/(x - TAN x` |
|
| 7239. |
We have f (x) lim_(n to oo)cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))…… ….cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) sum_(k=1)^(n)(1)/(2^(2k)) sec^(2) ((x)/(2^(k))) equals |
|
Answer» `COSEC^(2) X - (1)/(x^(2))` |
|
| 7240. |
The solution of the differential equation (dy)/(dx)+(y)/(x)=(1)/((1+lnx+lny)^(2)) is (where, c is an arbitrary constant) |
|
Answer» `XY[1+(ln(xy)^(2))]=(X^(2))/(2)+c` |
|
| 7241. |
If a, b and c are in geometric progression and the roots of the equation ax^(2) + 2bx + c = 0 are alpha and beta and those of cx^(2) + 2bx + a = 0 are gamma and delta |
|
Answer» `ALPHA != BETA != GAMMA != delta` |
|
| 7242. |
If (sinalpha+icosalpha)^4(cos2alpha-isin2alpha)^(-2)=costheta+isintheta," then "theta= |
|
Answer» 0 |
|
| 7243. |
Find the approximate value of f(5.001), where f(x)=x^(3)-7x^(2)+15. |
|
Answer» |
|
| 7245. |
Differentiate the functions given in Exercises 1 to 11 w.r.t. x. ( x)^(cos x) |
| Answer» | |
| 7246. |
Find the area bounded by the curves (x -1)^(2) + y^(2) = 1 and x^(2) + y^(2) = 1. |
|
Answer» |
|
| 7247. |
Let S = {a_1, a_2,…... a_n} where a_1, a_2………, a_n are nonzero real numbers. If the number of ordered pairs(a_(i),a_(j)),with i < j such that a_(i)a_(j) gt 0is 99 and the number of ordered pairs (a_(i),a_(j)) with i lt jsuch that a_(i)a_(j) lt 0is 91, then n is equal to |
|
Answer» 11 |
|
| 7248. |
Integrate the following int(x)/(sqrt(x^2-a^2)dx |
|
Answer» Solution :`INT(X)/sqrt(x^2-a^2)dx [ put `x^2-a^2=t^2` then 2xdx=2tdt or xdx=tdt] `int(tdt)/t=intdt=t+C `sqrt(x^2-a^2)+C` |
|
| 7249. |
If O is origin and affixes of P, Q, R are respectively z, iz, z + iz. Locate the points on complex plane. If DeltaPQR = 200then find sides of quadrilateral OPRQ |
|
Answer» |
|