Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

8451.

Solve -12x gt 30, when i.x is a natural number. ii.x is an integer.

Answer»


ANSWER :There is no SOLUTION
II. The i.solution set of INEQUALITY is {………..-6, -5, -4, -3}
8452.

Find the number of different seven digit numbers that can be written using only the three digits, 1,2,3 with the condition that the digit 2 occurs atleast 2 times in each number.

Answer»


ANSWER :`3^(7)-2^(7)-7.2^(6)`
8453.

A variable line 'L' Passing through the origin cuts two parallel lines x-y+10=0 and x-y+20=0 at two points A and B respectively . If P is a point on line 'L' such that OA , OP, OB are in harmonic progression then the locus of P is

Answer»

3x+3y+40=0
3x+3y+20=0
2x-3y+40=0
3x-3y+20=0

Answer :C
8454.

Integrate the following functions. int(x^(3))/(2x+1)dx

Answer»


ANSWER :`(x^(3))/(6)-(x^(2))/(8)+(x)/(8)-(1)/(16)log|2x+1|+c`
8455.

A: If the transformed equation of a curve is 9X^(2) + 16Y^(2) = 144 when the axes are rotated through an angle 45^(@), then the original equation is 25x^(2) - 14xy+ 25y^(2) = 288. R: If f(x,y)=0 is the transformed equation of a curve when the axes are rotate through an angle theta then the original equation of the curve is f(x cos theta + y sin theta, -x sin theta + y cos theta)=0

Answer»

Both A and R are true and R is the correct EXPLANATION of A.
Both A and R are true but R is not the correct explanation of A.
A is true but R is FALSE
A is false but R is false

ANSWER :A
8456.

int cos sqrt(x)dx=

Answer»

`2 [ SQRT(X) SIN sqrt(x) + cossqrt(x) ] + c `
2 `[ sqrt(x) sin sqrt(x) - COS sqrt(x) ] + c `
2 `[ sqrt(x) cos sqrt(x) + sin sqrt(x) ] + c `
2 `[ sqrt(x) cos sqrt(x) -sin sqrt(x) ] + c `

Answer :A
8457.

If y = (a^(cos x))/( sqrt(1+ x^(2) )),then (dy)/(dx) =

Answer»

` (a^(cos x ) (( 1+x^(2) )(LOG a)(sin a )(sin x) ))/( (SQRT( 1+ x^(2)))^(3)) `
` (-a^(cos x ) (( 1+x^(2) )(log a)(sin a )(sin x) ))/( (sqrt( 1+ x^(2)))^(3)) `
` (a^(cos x ) (( 1+x^(2) )(log a)(sin a )(sin x) +x))/( (sqrt( 1+ x^(2)))^(3)) `
` (-a^(cos x ) (( 1+x^(2) )(log a)(sin a )(sin x) +x))/( (sqrt( 1+ x^(2)))^(3)) `

Answer :D
8458.

IfA_n= [ad ]A_2 =[{:( a_2, a_s),( a_4 .a_5):}], A_5 =[{:( a_6,a_7,a_8),( a_9,a_10 ,a_11),( a_12,a_13,a_14):}]= A_n =[…]and so on , where a_r= [log _2 r] where [.] denotes greatest integer function ) .Then T_r (A_10 )is equal to ,(T_r stands for trace of teh matrix )

Answer»

800
80
792
160

Answer :B
8459.

Evaluate int_(0)^(1) x e^(x^(2))dx.

Answer»


ANSWER :`1/2 (e-1)`
8460.

The solution of linear programming problem, maximize Z=3x_(1)+5x_(2) subject to 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6, x_(1) ge 0, x_(2) ge 0 is ………..

Answer»

`x_(1)=2, x_(2)=0, z=6`
`x_(1)=2, x_(2)=6, z=36`
`x_(1)=4, x_(2)=3, z=27`
`x_(1)=4, x_(2)=6, z=42`

Answer :B
8461.

Two distinct numbers are chosen from 1,3,5,7 ……. 151,153,155 and multiplied . The probability that the product is a multiple of 5 is

Answer»

`1020/3003`
`1112/3003`
`1011/3003`
`1122/3003`

ANSWER :B
8462.

How many different numbers each of the six digit can be formed using the digit 1,2,1,2,3,3, ?

Answer»

90
92
88
94

Answer :A
8463.

The perpendicular distance of the point (3, -4, -5) from the line (x-2)/(4)=(y+6)/(5)=(z-5)/(-3) is ….....

Answer»

`1/5sqrt(1657)`
`(1)/(SQRT5)SQRT(1675)`
`1/5sqrt(1757)`
`(1)/(sqrt5)sqrt(1667)`

ANSWER :A
8464.

A curve is defined by the condition that the sum of the x and y intercepts of its tangents is always equal to 2. Express the condition by means of a differential equation.

Answer»


Answer :`X((DY)/(dx))^(2) - (x+y - 2)(dy)/(dx) +y = 0`
8465.

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=

Answer»

1
0
`-1`
`pi/4`

ANSWER :B
8466.

If the transversal y = m_(r)x: r = 1,2,3 cut off equal intercepts on the transversal x +y = 1 then 1 +m_(1),1 +m_(2),1+m_(3) are in

Answer»

A.P.
G.P.
H.P.
None of these

Solution :Solving `y = m_(r)x` and `x+y = 1`, we get `x = (1)/(1+m_(r))` and `y = (m_(r))/(1+m_(r))`.
Thus the POINTS of intersection of the three lines on the TRANSVERSAL are
`P ((1)/(1+m_(1)),(m_(1))/(1+m_(1))), Q ((1)/(1+m_(2)),(m_(2))/(1+m_(2)))` and `R((1)/(1+m_(3)),(m_(3))/(1+m_(3)))`
According to QUESTION
`PQ = QR`
`((1)/(1+m_(1))-(1)/(1+m_(2)))^(2)+((m_(1))/(1+m_(1))-(m_(2))/(1+m_(2)))^(2)`
`= ((1)/(1+m_(2))-(1)/(1+m_(3)))^(2) +((m_(2))/(1+m_(2))-(m_(3))/(1+m_(3)))^(2)`
`rArr (m_(2)-m_(1))/(1+m_(1)) = (m_(3)-m_(2))/(1+m_(3))`
`rArr (1+m_(2))/(1+m_(1)) - 1 = 1 -(1+m_(2))/(1+m_(3))`
`rArr (1+m_(2))/(1+m_(1)) +(1+m_(2))/(1+m_(3)) =2`
`rArr 1+m_(2) =(2(1+m_(1))(1+m_(3)))/((1+m_(1))+(1+m_(3)))`
`rArr 1+m_(1), 1 +m_(2), 1 +m_(3)` are in H.P.
8467.

Ifu = sqrt( a^2cos^2 theta+b^2 sin ^2theta ) + sqrt( a^2 sin^2 theta+b^2 cos^2theta ) then thedifferencebetweenthe maximumand manimumvaluesofu^2is givenby

Answer»

`(a+b)^2`
`2 SQRT(a^2 +b^2)`
`2(a^2 +b^2)`
`(a-b)^2`

ANSWER :D
8468.

If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number

Answer»

602
603
600
601

Answer :D
8469.

State whether the following statements are true or false, Justify. If ** is a commutative binary opertion on N, then a ** (b **c) = (c**b) **a

Answer»
8470.

Integrate the following functions. int(x^(2)+a^(2))/(x^(4)+a^(4))dx

Answer»


ANSWER :`(1)/(sqrt2a).TAN^(-1)((x^(2)-a^(2))/(sqrt2ax))+C`
8471.

A and B are among 30 persons who sit at random along a round table. Find the probability that there are any six persons between A and B .

Answer»


ANSWER :`(2)/(29)`
8472.

Which of the following is CORRECT combination ?

Answer»

`(II) (ii) (S) `
`(I) (i) (Q) `
`(I) (ii) (Q) `
`(III) (ii) (R ) `

SOLUTION :N/A
8473.

Which of the following is CORRECT combination ?

Answer»

`(II) (ii) (R )`
`(II) (i) (R ) `
`(III) (i) (Q) `
`(IV) (i) (S) `

Solution :N/A
8474.

Which of the following is CORRECT combination ?

Answer»

`(IV) (II) (S)`
`(III) (i) (Q) `
`(IV) (i) (S)`
`(II) (ii) (R ) `

Solution :N/A
8475.

Axes are co-ordinate axes, S and S^(1)are Foci, B and B^(1)are the ends of minor axis|SBS^(1) = sin ^(-1) ((4)/(5) ) .if area of SB S^(1) B^(1)is 20sq. Units then eq. of the ellipse is

Answer»

A) ` (X^(2) )/( 20 ) + ( y^(2))/( 16) =1`
B) ` (x^(2))/(25) +(y^(2))/( 16)=1`
C) ` (x^(2))/( 25) +(y^(2))/( 4))= 1 `
D) ` (x^(2))/( 25) +( y^(2))/( 20 ) =1 `

ANSWER :D
8476.

Solve the following differential equation:xy(dy)/(dx)-y^2=(x+y)^2e^(-y//x)

Answer»


ANSWER :`E^(y/X)((x)/(x+y))=log|x|+c`
8477.

If the the angle between the circles x^2+y^2-12x-6y+41=0 andx^2+y^2+kx+6y-59=0 is 45^@ find k.

Answer»


ANSWER :`+-4`
8478.

Evaluate the following integrals (iv) int_(-1)^(1)(x^(4)+sin^(3)x)dx

Answer»


ANSWER :`(2)/(5)`
8479.

Draw the graph of y=sin^(-1)(sin x)

Answer»

SOLUTION :`y = SIN^(-1) (sin X)`
`rArr""sin y = sin x`
`rArr""y=npi+(-1)^(n)x, n in Z`
Now `y in [-pi//2, pi//2] ` so we have the following table for values for values of x and y.

From the above informations, we can PLOT the graph of `y=sin^(-1)(sin x)` as shown in the following figure.
8480.

Let C be incircle of DeltaABC. If the tangenst of lengths t_(1), t_(2) and t_(3) are drawn inside the given triangle parallel to sides a,b and c, respectively, then (t_(1))/(a )+ (t _(2))/(b)+ (t_(3))/©is equal to

Answer»

0
1
2
3

Answer :B
8481.

Evalute the following integrals int (sin 2x)/((a + b cos x )^(2))dx

Answer»


ANSWER :`-(2)/(b^(2)) [ " LOG "|a + b cos X | + (a)/((a + b "cos x")) ] + C `
8482.

If n_(p_(r)) = 840 , n_(c_(r)) = 35, then n is equal to

Answer»

1
7
4
10

Answer :B
8483.

A monopolist's demand function is p= 300 - 5x. Find the average revenue function andmarginal revenue function.

Answer»


SOLUTION :N/A
8484.

Prove that any function f(x) defined in a symmetrical interval (-l, l) can be presented as a sum of an even and an odd function. Rewrite the following functions in the form of a sum of an even and an odd function : (a) f(x)=(x+2)/(1+x^(2))""(b) y=a^x.

Answer»


ANSWER :`(a) F(X)=(2)/(1+x^(2))+(x)/(1+x^(2));`
(B) `a^(x)=(a^(x)+a^(-x))/(2)+(a^(x)-a^(-x))/(2)`
8485.

Which of the following forms of haemoglobin is not present in erythrocytes ?

Answer»

Methemoglobin
Oxyhaemoglobin
Carbon monooxyhaemoglobin
Carbon dioxy haemoglobin

Answer :A
8486.

Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

Answer»


ANSWER :`(1)/(2 SQRT(2)) log |(sqrt(2) X + sqrt(1 + x^(2)))/(sqrt(2) x - sqrt(1 + x^(2)))|`
8487.

Let A = ((1,2,3),(0,0,0),(3,2,1)) and A^(n)=((a_(n),b_(n),c_(n)),(0,0,0),(c_(n),b_(n),a_(n))) AA n in N, If a= lim_(nrarroo)(1)/(2^(n-2))(a_(n)+b_(n)+c_(n)) then |a+3i|= ________

Answer»


ANSWER :5
8488.

If veca=2hati+3hatj-hatk, vecb= hati+2hatj-5hatk, vec c=3hati+5hatj-hatk, then a vector perpendicular to veca and lies in the plane containing vecb and vec c is :

Answer»

`-17hati+21hatj-97hatk`
`17hati+21hatj-123hatk`
`-17hati-21hatj+97hatk`
`-17hati-21hatj-97hatk`

SOLUTION :N/A
8489.

Find the eccentricity foci, equation of the directrices and length of the latusrectum of the hyperbola x^(3) - 4y^(2) = 4

Answer»


ANSWER :1
8490.

Differentiate the following with respect to x: (1- log x)/(1+ log x)

Answer»


ANSWER :`(-2)/(X(1 + LOG x)^(2))`
8491.

Find all the values of following . (1 - I sqrt3)^(1//3)

Answer»


ANSWER :`2^(1/3)CIS(6k-1)pi/9,k=0,1,2`
8492.

The volume generated by the region bounded by the curve y=sqrt(x) and the line x=0 and x=pi about x axis is :

Answer»

`(pi^3)/(3)`
`pi^3`
`(2pi^3)/(3)`
`(pi^2)/(2)`.

ANSWER :A
8493.

Compute the integral I _(n) = int_(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,nis a natural number

Answer»


ANSWER :`I_(N) = (-1)^(n) (n!)/((m +1)^(n+1))`
8494.

Verify the Rolle's theorem for each of the function in following questions: f(x)= sin^(4)x + cos^(4)x, "in " x in [0, (pi)/(2)]

Answer»


ANSWER :`(PI)/(4) in (0, (pi)/(2))`
8495.

Vertices of an isosceles triangle of area a ^(2)are (-a,0) and (a,0). Equation of the circumcircle of the triangle is

Answer»

`X ^(2) + y ^(2) + 2ax - 2ay +a ^(2)=0`
`x ^(2) + y ^(2) - 2ax +2ay +a ^(2) =0`
`x ^(2) + y ^(2) =a ^(2)`
none of these

ANSWER :C
8496.

If|x|lt1thenthecoefficientofx ^ 5intheexpansion of(3x ) /((x- 2 ) ( x + 1 ))is

Answer»

` (33 )/(32)`
`- (33 ) /(32 ) `
` (31 ) /(32 ) `
`- (31 ) /( 32 ) `

SOLUTION : ` (3 x )/( (x - 2 )( x + 1 )) `
` = (- 3 ) /(2) x ( 1 +x ) ^(-1 )(1-(x)/(2) ) ^(-1 ) `
`=(-3 ) /(2)x (1- x+x ^ 2-x ^(3 )+x ^ 4.. )(1 +(x ) /(2)+(x ^ 2 ) /(4)+(x ^ 3) /(8)+(x ^ 4 ) /(16 )+... `
`therefore ` COEFFICIENTOF`x ^5`
`=( - 3 ) /(2 ) [ (1)/(16) - (1)/(8)+(1 ) /(4) - (1)/(2)+1 ] `
`= (-3)/(2) [(1 - 2+ 4 - 8 +16 )/(16)] `
`= (-3 )/(2) ((11)/(16)) `
`=(-33)/(32)`
8497.

If R is the set of all real numbers and f : R - {2}to R is defined by f(x)=(2+x)/(2-x) for x in R - {2}

Answer»

`R-{-2}`
R
`R-{1}`
`R-{-1}`

ANSWER :D
8498.

If x+i y=(-1+i sqrt(3))^(2010), then x=

Answer»

`2^(2010)`
`-2^(2010)`
`-1`
1

Answer :A
8499.

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Answer»

`"^(2n-1)C_(N)`
`"^(2n)C_(n)`
`"^(2n+1)C_(n)`
None of these

Solution :`(a)` LET the required value be `S`
`sum_(j=0)^(n)sum_(i=0)^(n)(-1)^(i+j-1)'^(n)C_(i)*^(n)C_(j)=sum_(i=0)^(n)(-1)^(2i-1)('^(n)C_(i))^(2)+2S`
`:.0=-sum_(i=0)^(n)('^(n)C_(i))^(2)+2S`
`:.2S=^(2n)C_(n)`
`:.S=^(2n-1)C_(n-1)=^(2n-1)C_(n)`
8500.

The plane 2x-y+3z+5=0 is rotated through 90^(@) about its line of intersection with the plane 5x-4y-2z+1=0. The equation of the plane in the new position is

Answer»

`6x-9y-29z-31=0`
`27x-24y-26z-13=0`
`43x-32y-2z+27=0`
`26x-43y-151z-165=0`

ANSWER :B