InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 9251. |
Write all the unit vectors in XY-plane. |
|
Answer» <P> `vec(P'P)=SIN theta hatj` |
|
| 9253. |
If A and B are symmetric matrices of same order , then AB is symmetric if and only if …….. . |
|
Answer» |
|
| 9254. |
A number n is chosen at random from S={1,2,3,…..50}. Let A={n in S :n+(50)/(n) gt 27}, B={n in S : n "is a prime"} and C={ n in S : n "is a square"} Then correct order of their probability is |
|
Answer» <P>`P(A) lt P(B) lt P(C )` |
|
| 9255. |
Express the -2 points geometrically in the Argrand plane. |
| Answer» SOLUTION :`-2=-2+i0=(-2,0)` | |
| 9256. |
The starting value of the model class of a distribution is 20. The frequency of the model class is 18. The frequencies of the classes preceeding and succeeding are 8,10 and the width of the model class is 5, then mode is |
|
Answer» 18.5 |
|
| 9257. |
If |z + 2i| le 1 and z_(1) = 6-3i then the maximum value of |iz + z_(1) - 4| is ____ |
| Answer» Answer :B | |
| 9258. |
An equivalent expression for (pimplies q ^^ r) vv (r hArr s) which contains neither the biconditional nor the conditional is |
|
Answer» `(~p vv q ^^ R) ^^ [(~r vv s )^^ (r vv ~s)]` |
|
| 9259. |
If 20! Were multiplied out, how many consecutive zeros would it have on the right? |
| Answer» Solution :If "20!" were MULTIPLIED out, then the number of consecutive zeros on the RIGHT is 4. due to presence of `4xx5,10,14xx15,20`. | |
| 9260. |
Show that the following vector are co-planar. hati-2hatj+2hatk, 3hati+4hatj+5hatk, -2hati+4hatj-4hatk. |
|
Answer» Solution :Let `VECA = hati-2hatj+2hatk` `vecb = 3hati+4hatj+5hatk` `vecc = -2hati+4hatj-4hatk` The vectors `veca.vecb.vecc` are coplanar if `(VECAXXVECB).vecc = 0` HENCE as `(vecaxxvecb).vecc = 0 the GIVEN vectors are coplanar. |
|
| 9261. |
1+(2x)/(1!) +(3x^2)/(2!) +(4x^3)/(3!) +.......oo = |
|
Answer» `e^x` |
|
| 9262. |
Evaluate the integrals :I = int_(0)^(3) (x dx)/( sqrt(x + 1) + sqrt(5x + 1)), |
|
Answer» |
|
| 9264. |
If an equilateral Delta is inscribed in a parabola y^(2) = 12x with one of the vertex is at the vertex of the parabola then its height is |
| Answer» Answer :C | |
| 9265. |
Question 11 and 12 refer to the gaph above. Q. Which of the following is the best approximation for the decrease in the number of cars purchased per year between 2011 and 2014? |
| Answer» Answer :B | |
| 9266. |
Find the approximate value of f(2.01), where f(x)=4x^(2)+5x+2. |
|
Answer» |
|
| 9267. |
Evaluate the following integrals : int_(1)^(2)(1)/(x(1+x^(2)))dx |
|
Answer» |
|
| 9268. |
Integrate the rational functions 2/((1-x)(1+x^(2))) |
|
Answer» |
|
| 9269. |
Equation of the latusrectum of the ellipse 9x^(2)+4y^(2)-18x-8y-23=0 are |
|
Answer» `y= PM SQRT5` |
|
| 9270. |
There are four doors leading to the inside of a cinema hall. In how many ways can a person enter into it an come out ? |
| Answer» Solution :There are four doors leading to the INSIDE of a CINEMA HALL. A person can enter into it and come out in `4^2=16`different ways .(By the principle of COUNTING.) | |
| 9271. |
if f:R rarr R is defined bty f(x)={{:(|[x-5]|, "for" x lt 5),([|x-5|],"for" x ge5):} Then (fof)(-7/2)= (here [x] is the greatest integer not exceeding x) |
|
Answer» `(FOF ) (-(11)/(2))` |
|
| 9272. |
Common tangents are drawn to the parabola y^2 = 4x & the ellipse 3x^2 + 8y^2 = 48 touching the parabola at A & B and the ellipse at C & D. Find the area of the quadrilateral. |
|
Answer» |
|
| 9273. |
A is a 3xx3 matrix , then |3A|=....|A|. |
|
Answer» 3 |
|
| 9274. |
Three dailies A,B,C are published in a city. 20% of the city population read A,16% read B,14% read C,8% read both A and B , 5% both A and C , 4% both B and C ,2% read all the three. Find percentage of population that read atleast one news paper and find the percentage of population who read news paper A only. |
|
Answer» |
|
| 9275. |
If (x + iy)^((1)/(3)) = 5+ 3i , then 3x + 5y = |
|
Answer» 480 |
|
| 9276. |
Find the Lim_(nrarroo) ((""^(3n)C_(n))/(""^(2n)C_(n)))^(1/n) Where ""^(i)C_(j) is a binomial coefficient which means (i.(i-1)"…."(i-j+1))/(j.(j-1)"….."2.1) |
|
Answer» |
|
| 9277. |
Calculate without using trigonometric tables: |
|
Answer» `4 cos 20^(@)-sqrt(3)cot20^(@)` |
|
| 9278. |
Integrate the functions in exercise. (1)/(sqrt(1+4x^(2))) |
|
Answer» |
|
| 9279. |
int (x^(2) + x)/((x^(2) + 1)(x - 1))dx = |
|
Answer» `TAN^(-1)` x + LOG |x - 1| +c |
|
| 9280. |
Find the value of x and y so that the vectors 2hat(i)+3hat(j) and xhat(i)+yhat(j) are equal . |
|
Answer» |
|
| 9281. |
If vec(a)+vec(b)+vec( c )=0 and |vec(a)|=6,|vec(b)|=5,|vec( c )|=7 then find the angle between the vectors vec(b) and vec( c ). |
|
Answer» |
|
| 9282. |
int((sinx)^(99))/((cosx)^(101))dx=....+c |
|
Answer» `((TANX)^(100))/(100)` |
|
| 9283. |
Find the coefficient of a^(5) b^(3)c^(4) in the expansion of (ab+(bc)/(2)-(ca)/(3))^(6) |
|
Answer» |
|
| 9284. |
Statement I : f(x) = ax^(41) + bx^(-40) rArr (f'(x))/(f(x)) = 1640x^(-2) Statement II : (d)/(dx) tan^(-1) ((2x)/(1-x^(2))) = (1)/(1 + x^(2)) Which of the following is correct ? |
|
Answer» I is TRUE, but II is FALSE |
|
| 9285. |
The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k), where n=1,2,…. is |
|
Answer» `(-1)^(n)*"^(3N-1)C_(n-1)` But `.^(3n)C_(0)=.^(3n-1)C_(0)` `-^(3n)C_(1)=-^(3n-1)C_(0)-^(3n-1)C_(1)` `-^(3n)C_(2)=^(3n-1)C_(1)+^(3n-1)C_(2)` `-^(3n)C_(3)=-^(3n-1)C_(2)-^(3n-1)C_(3)` `…………....................................` `(-1)^(n)*^(3n)C_(n)=(-1)^(n)*^(3n-1)C_(n-1)+(-1)^(n)*^(3n-1)C_(n)` On ADDING we get `S_(n)=(-1)^(n)*^(3n-1)C_(n)` |
|
| 9286. |
Find the coefficient of x^(50) in (2-3x)/((1-x)^(3)) |
|
Answer» |
|
| 9287. |
Consider the following two statements:P: If 7 is an odd number , then 7 is divisible by 2 Q: If 7 is a prime number , then 7 is an odd number .If V_1 is the truth value of the contrapositive of P and V_2 is the truth value of contrapositive of Q, then the ordered pair (V_1,V_2) equals: |
|
Answer» (F,F) Truth value of Q and its contrapositive is T. |
|
| 9288. |
If xin((3pi)/4,pi) what is dy/dxfor y = | cos x | + | sin x | ? |
| Answer» SOLUTION :y = | COS X | + | sin x | As x `in ((3PI)/4,pi)` we have y = - cos x + sin x `therefore dy/dx=`sin x + cos x | |
| 9290. |
The shortest distance between the lines r=(-2hat(i)+hat(j)-hat(k))+r(3hat(i)+3hat(j)-hat(k)) and r=(hat(i)-hat(j)+2hat(k))+k(-1hat(i)+2hat(j)+4hat(k)) is |
|
Answer» 0 |
|
| 9291. |
If x = tan 15^(@), y = cosec 75^(@)and z =4 sin 18^(@) then, |
|
Answer» `X LT y lt z` |
|
| 9292. |
if(5x^(2) +2)/(x^(3)+x)=(A_(1))/(x)+(A_(2)x+A_(3))/(x^(2)+1), then(A_(1), A_(2), A_(3))= |
|
Answer» no IMAGINARY ROOTS |
|
| 9293. |
If F(x)=[(cos^(2)x,cosxsinx),(cosxsinx,sin^(2)x)] and the difference of x and y is the odd Multipleof (pi)/(2),thenF(x)F(y) is : |
|
Answer» ZERO matrix |
|
| 9294. |
If cottheta=5//12andtheta lies in the third quadrant , then what is (2sintheta+3costheta) equal to? |
|
Answer» `-4` `rArrtantheta=(12)/(5)=("perpendicular"(P))/("base"(b))` `therefore"Hypotenuse"(H)=sqrt(p^(2)+b^(2))` `=sqrt((12)^(2)+(5)^(2))=sqrt(144+255)=sqrt(169)=13` Consider 2 `2sintheta+3costheta` `=2((p)/(H))+3((b)/(H))`""(H- Height) But`theta`lies in `3^(rd)`QUADRANT and sin `theta , costheta` both are negative in `3^(rd)` quadrant `therefore2sintheta+3costheta=2((-p)/(H))+3((-b)/(H))` `=2((-12)/(13))+3((-5)/(13))` `=(-24-15)/(13)=(-39)/(13)=-3` WHICHIS an odd prime. |
|
| 9295. |
int (cot x)/(1+sin^(2)x)dx= |
|
Answer» `LOG |(sin X)/(sqrt(1 + sin^(2)x))| ` + C |
|
| 9296. |
Differentiate (1-cosx)/(1+cosx) |
|
Answer» SOLUTION :`y=(1-cosx)/(1+cosx)` `d/dx(1-cosx)(1+cosx)` `dy/dx=(-(1-cosx)d/dx(1+cosx))/(1+cosx)^2` `=(SINX(1+cosx)+(1-cosx)sinx)/(1+cosx)^2` `(2sinx)/(1+cosx)^2` |
|
| 9297. |
The slope of the tangent to the curve y = 3x^(2) + 4 cos x " at " x = 0 is |
|
Answer» 4 |
|
| 9298. |
Equation of tangent of the curve y = 1 - e^(x//2) at that point at which the curve crosses the y-axis, is : |
|
Answer» `x+y=1` |
|
| 9299. |
log(1+x+x^(2)+...oo)= |
|
Answer» `X+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+…oo` |
|
| 9300. |
If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0respresent the pair of parallel straight lines , then prove that h^(2)=abandabc+2fgh-af^(2)-bg^(2)-ch^(2)=0. |
|
Answer» SOLUTION :Let the given equation represent PAIR of parallel straigh lines `lx+my+n=0andlx+my+n'=0` `:. ax^(2)+2HXY+b^(2)+2gx+2fy+c` `=(lx+my+n)(lx+my+n')` `=(lx+my)^(2)+L(n+n')x+m(n+n')y+nn'=0` Thus , expression`(lx+my)^(2)` is same as `ax^(2)+by^(2)_2hxy`. Therefore , `ax^(2)+2hxy+by^(2)`must be perfect SQUARE of liner expression inx and y. So `(2h)^(2)-4ab=0` `:. h^(2)=ab` Also , `abc+2ghf-af^(2)-bg^(2)-ch^(2)=0`. |
|