Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1051.

In a certain college, 4% of ·boys and 1 % of girls are taller than 1.75 metres. Furthermore, 60% of the students are girls. If a student is selected at random and is taller than 1.75 metres, what is the probability that the selected student is a girl?

Answer»


SOLUTION :LET `E_1and E_2` be the EVENTS of selecting a boy and a girl respectively.
Then, `P(E_1)=40/100=2/5,and P(E_2)=60/100=3/5`.
Let E = EVENT that the student selected is taller than 1.75 m.
Then `P(E//E_1)=4/100=1/25and P(E//E_2)=1/100`.
Probability that the selected student is a girl, givne that she is taller than 1.75 m
`=P(E_2//E)`
`=(P(E//E_2).P(E_2))/(P(E//E_1).P(E_1)+P(E//E_2.P(E_2))`
1052.

Evalute the following integrals int (dx)/(6x^(2) - 5x + 1)

Answer»


ANSWER :`LOG|(2x-1)/(3x-1)|+C`
1053.

The set of values of the parameter ‘a’ for which the function, f(x) = 8ax – a sin 6x – 7x – sin 5x increases & has no critical points for all x in R, is

Answer»

`[-1,1]`
`(-OO,-6)`
`(6,+oo)`
`[6, +oo)`

ANSWER :C
1054.

Show that for all values of lambda , the lines joining the origin to the points common to x^2+2hxy-y^2+gx+fy=0and fx -gy= lambda are at right angles .

Answer»
1055.

A bag contains 4 red, 5 black and 6 blue balls. Find the probability that two balls drawn at random simultaneously from the bag are a red and a black ball.

Answer»


ANSWER :`(4)/(21)`
1056.

The sum 1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!) can be written in the form 2^a/(b!) Find a and b.

Answer»

Solution :1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!)`
`1/(10!)((10!)/(1!9!) + (10!)/(3!7!) + .... + (10!)/(9!1!))`
`1/(10!) ("^10C_1 + ^10C_3 + .... + ^10C_9)`
`1/(10!) 2^(10-1)`
`2^9/(10!)` = `2^a/(B!)` where a = 9, b = 10
1057.

Find the acceleration of rod A and wedgeB in the arrangement shown in figure if the mass of rod equal that of the wedge and the friction between all contact surfaces is negligible Take angle ofwedge as 45^(@) & g=9.8 m//s^(2)

Answer»


ANSWER :`4.90`
1058.

If alpha, beta , gamma are the roots of x^(3) - 2x^(2) + 3x + 5 = 0 then the equation whose roots beta^(2) gamma^(2), gamma^(2) alpha^(2), alpha^(2) beta^(2)is

Answer»

`y^(3) - 29y^(2) - 50y - 625 = 0 `
`2Y^(3) - 39y^(2) - 70y + 125 = 0 `
`y^(4) - 24y^(2) + 65y - 55 = 0 `
`5Y^(5) - 12y^(2) + 68y - 155 = 0 `

Answer :1
1059.

Locus of the points of intersection of perpendicular tangents drawn one to each of the circles x^(2)+y^(2)-4x+6y-37=0, x^(2)+y^(2)-4x+6y-37=0, x^(2)+y^(2)-4x+6y-20=0 is

Answer»

`X^(2)+y^(2)-4x+6y=0`
`x^(2)+y^(2)-4x+6y-50=0`
`x^(2)+y^(2)-4x+6y-57=0`
`x^(2)+y^(2)-4x+6y-70=0`

ANSWER :D
1060.

Obtain Maclaurin's series for f(x) = log sec x

Answer»


ANSWER :`F(X) = (x^(2))/(2) + (x^(2))/(12)`
1061.

Let vec(a),vec(b) and vec(c )be three non-coplaner vectors and vec(p),vec(q),vec(r) be three vectors such that vec(p)=2vec(a)-vec(b)+vec(c ),vec(q)=vec(a)-3vec(b)+2vec(c),vec(r)=vec(a)+vec(b)-vec(c ). If [vec(a)vec(b)vec(c)]=2 then [vec(p)vec(q)vec( r)] equals

Answer»

6
-6
3
None of these

Solution :
`"Area of 1 traingle" =(1)/(2)xx2pixxpi=pi^(2)"" "Area of 1 semicircle" =(1)/(2)(pi((1)/(2))^(2))=(pi)/(8)`
`underset(xrarroo)(Lt)(underset(0)overset(x)(int)F(t)DT)/(underset(0)overset(x)(int)G(t)dt)=underset(xrarroo)(Lt)(pi^(2).[(x)/(2pi)]+underset([(x)/(2pi)])overset((x)/(2pi))(int)COS^(-1)(COSX)dx)/((pi)/(8)[x]+underset([x])overset(x)(int)sqrt({x}-{x}^(2)).dx)`
`underset(xrarroo)(Lt)(pi^(2)((x)/(2pi))-pi^(2).{(x)/(2pi)}+int)/((pi)/(8)x-(pi)/(8){x}+int)=underset(xrarroo)(Lt)((pi)/(2)+(("finite quantity"))/(x))/((pi)/(8)+(("finite quantity"))/(x))=((pi//2))/((pi//8))=4`
1062.

Prove that the sequence with the general term (a) x_1=(1-(-1)^(n))/(n) (b) x_n=1/n sin [(2n-1)pi/2]

Answer»


Answer :For `a gt 1" PUT "rootn(a)=1+alpha_n (alpha_n gt 0)` and,with the aid of the inequality `a=(1+alpha_(n))^(n) gt nalpha_(n)`, prove that `alpha_n` is an INFINITESIMAL. For `a LT 1` put `rootn(a)=(1)/(1+alpha_(n)) (alpha_n gt 0)` and make USE of the inequality `1/a=(1+alpha_(n))^(n) gt nalpha_n`
1063.

Test differentiability and continuity of the following functions. |1-1/x| at x = 1

Answer»

0.25
0.5
0.75
1

Answer :B
1064.

int_(0)^(pi) (theta sin theta)/(1 +cos^2 theta) d theta is equal to

Answer»

`(pi^2)/(2)`
`(pi^3)/(3)`
`pi^2`
`(pi^2)/(4)`

ANSWER :D
1065.

If (1+i) is a root of the equation x^(3) -5x ^(2) +9x -6 =0, then its other two roots are-

Answer»

`-1, (2-i)`
`1, (-2+i)`
`1,(2-i)`
`1, -2-i`

ANSWER :C
1066.

Fill int the blanks choosing correct answer from the bracket. Ifa = b cosC , then _____ angle is a right angle.

Answer»

A
B
C

Answer :B
1067.

Whichof the following statement is correct

Answer»

`N_(2)^(+)` is havingbond of 2.5
To GET`N^(+)` from `N_(2)^(-)`, ELECTRON(s) are removed from antibondingorbitals
`B_(2)` molecule is paramagetic with `mu` VALUE of1.73Bm.
In thechange of `O_(2) to O_(2)^(+)`the bondlengthincrease

Answer :A
1068.

If a line makes angles pi/3 and pi/4 with the x - axis and y - axisrespectively, then the angle made by the linewith the z - axis is

Answer»

`pi/2`
`pi/4`
`(5PI)/12`
`pi/3`

ANSWER :D
1069.

The rootsof48x^3 - 44 x^2 + 12 x -1=0are in

Answer»

A.P
G.P
H.P
A.G.P

Answer :C
1070.

Integrate the following functions : intx^(2)sqrt(8-x^(6))dx

Answer»


ANSWER :`(1)/(3)[(X^(3))/(2)SQRT(8-x^(6))+4sin^(-1)""(x^(3))/(2sqrt2)]+c`
1071.

If g(x)=x^2-1 and gof (x)=x^2+4x+3 , then f(1/2) is equal (f (x) gt 0AA x in R) :

Answer»

`3/2`
`2`
`5/2`
None of these

SOLUTION :`G[f(N)]=x^2+4n+3`
`RARR g[f(1/2)]=1/4+4xx1/2+3 rArr [f(1/2)^2 -1]=5+1/4`
`rArr [f(1/2)]^2 =25/4 rArr f(1/2)=5/2`
1072.

Find the asymptotes of the following curves : y = (x^(2)-6x+3)/(x-3)

Answer»


ANSWER :x=1 `y = x-3`
1073.

ABCD is a rectangular field with AB = a and BC = b. A lamp post of height h at A subtends an angle alpha at P, the middle point of CD and another lamp post of equal heigh at D subtends an angle beta at Q, the middle point of BC. If PQ subtends an angle theta at A, then cot^(2) alpha cot^(2) beta cos^(2) theta = k^(2), where k =

Answer»

`(a^(2) + B^(2))//2H^(2)`
`(a^(2)-b^(2))//2h^(2)`
`2h^(2)//(a^(2) + b^(2))`
`2(a^(2) + b^(2))H^(2)`

ANSWER :A
1074.

I=(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx (4)/(5)Alog|sqrt(2xe^(sinx)+1-1)/(sqrt(2xe^(sinx)+1+1))|+C then A is equal to.

Answer»


ANSWER :1.25
1075.

Let f(x)={{:(((e^"[x]"-e^"{x}")e^(-x)+A),"," x lt 0),("2 sin {x}"/"tan {x}",","x gt 0),(2,","x =0):} The value of A so that f is continous at x=0 is ([x] is greatest integer function and {x} is the fractional part of x) is

Answer»

`E^(-1)`
`3-e^(-1)`
`2-e^(-1)`
`2`

ANSWER :B
1076.

If xyz= m and det p [{:( x,y,z),(z,x,y),(y,z,x) :}] where P is an orthogonal matrix the value of x^(-10 ) y^(-12),z^(-12) +x^(12), y^(12) , z^(-10 )can be

Answer»

1
`m^(-12) `
`m^(-10 ) `
` m^(10 ) `

ANSWER :B
1077.

Find the values of the following integrals (ii) int_(0)^(pi) cos^(3)x sin^(4) x dx

Answer»

0
1
16
`(3PI)/(16)`

ANSWER :A
1078.

Two cards are drawn successively one by one with out replacement from a pack of cards. The mean of number of kings is

Answer»

`(1)/(13)`
`(2)/(13)`
`(3)/(13)`
`(4)/(13)`

ANSWER :B
1079.

Find the unit vector perpendicular to each of the vectors vec(a)+vec(b)" and "vec(a)-vec(b)" where "vec(a)=3hat(i)+2hat(j)+2hat(k)" and "vec(b)=hat(i)+2hat(j)-2hat(k).

Answer»


ANSWER :`(2HAT(i)-2hat(j)+hat(k))/3`
1080.

How many two digit even number of distinct digits can be formed with the digits 1,2,3,4,5?

Answer»

Solution :Two digit even numbers of distinct digits are to be FORMED with the digits 1,2,3,4,5. Here the even numbers must be END with 2 or 4. When 2 is placed in the UNIT place, the tenth place can be FILLED up by other 4 digits in 4 different ways. SIMILARLY, when 4 is placed in the unit place, the tenth place can be filled up in 4 different ways.
`:.` The total number of two digit even numbers` =4+4=8.`
1081.

For the matrix A=[{:(3,2),(1,1):}] , find the numbers a and b such that A^2+aA+bI=O

Answer»


ANSWER :A=4
1082.

Find all points of discontinuity of f where f is defined by f(x)={(2x+3,xle2),(2x-3,x>2):}

Answer»

Solution :`f(x)={(x,ifxle1),(5, ifx>1):}}` For `xgt1,f(x)=5` which is a constant FUNCTION and THEREFORE conti nuous. Hence f(x) is continuous at x=2.
1083.

The solution of (x^(2) - y^(2)) dx + 2xy dy = 0 is

Answer»

`X^(2) + y^(2) = CX`
`x^(2) - y^(2) = cx`
`x^(2) + y^(2) = CY`
`x^(2) + y^(2) = cx^(2)`

ANSWER :A
1084.

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

Answer»

`pi/6`
`pi/4`
`pi/3`
`pi/2`

ANSWER :C
1085.

If cos (A -B) =5/3,tan A tan B =2, then which one of the following is true ?

Answer»

`SIN (A+B) =1/5`
`sin (A+B) =- 1/5`
`COS (A-B) =1/5`
`cos (A+B) =-1/5`

ANSWER :D
1086.

Consider a binary operation ** on N defined as a**b=a^3+b^3. Choose the correct answer.a) both associative and commutative b)commutative but not associative c) associative but not commutative d) neither commutative nor associative

Answer»

`**` both ASSOCIATIVE and commulative
`**` COMMUTATIVE but not associative
`**` associative but not commutative
`**` NEITHER commutative nor associative

Answer :B
1087.

If int (1)/(cos^(6) x + sin^(6) x) dx = tan^(-1) f(x) + C then f(x) =

Answer»

tan X - COT x
tan x + cot x
SEC x + tan x
sec x - TANX

ANSWER :A
1088.

If sqrt(x)+sqrt(y)=sqrt(10), show that (dy)/(dx)+sqrt(y/x)=0

Answer»


ANSWER :`0`
1089.

Classify 10 kg measures as scalar and vector.

Answer»

Solution :The measure 10 KG has only MAGNITUDE and THEREFORE it is a scalar.
1090.

Thetangentat a point(1,1)to thecurvef(x)= x^2+ bx - bmakesa trinaglein thefirstquadrant withaxes . Ifthe areaofthistriangleis 2Sq, unitsthenthe valueof b is ……

Answer»

`-1`
`-2`
`-3`
`1`

ANSWER :C
1091.

The system of linear equations : x+y+z=6,x+2y+3z=1 and x+2y+az=6 has no solutions when :

Answer»

`b= 3 a ne 10`
`b=2 a=3`
`a=3 b ne 10`
`a= 2 b ne 3`

ANSWER :C
1092.

The solution of the differential equation (1+e^(x))y(dy)/(dx) = e^(x) when y=1 and x = 0 is

Answer»

`E^(y^(2)//2) = SQRT(e)(1+e^(x))`
`e^(y^(2)//2) = e(1+e^(x))`
`2.e^(y^(2)//2) = sqrt(e)(1+e^(x))`
`2.e^(y^(2)) = e(1+e^(x))`

ANSWER :C
1093.

A flash light has 10 batteries out of which 4 are dead. If 3 batteries are selected without replacement and tested, then the probability that all 3 are dead is

Answer»

1)`1/30`
2)`2/8`
3)`1/15`
4)`1/10`

ANSWER :A
1094.

If a=hati+2hatj+3hatk and b=hatixx(axxhati)+hatjxx(axx hatj)+hatk+(a xx hatk), then length of b is equal to

Answer»

`SQRT(12)`
`2sqrt(12)`
`3sqrt(14)`
`2sqrt(14)`

Solution :We have , `a=hat(i)+2hat(j)+3hat(k)`
`b=hat(i)xx(axxhat(i))+hat(j)xx(axxhat(j))+hat(k)xx(axxhat(k))`
Now , `hat(i)xx(axxhat(i))=(hat(i).hat(i))a-(hat(i).a)hat(i)`
`=a-a_(1)hat(i)""["LET" (a=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k))]`
Similarly , `hat(j)xx(axxhat(i))=a-a_(2)hat(j) and hat(k)xx(axxhat(k))`
`therefore b=3a-a=2a=2(hat(i)+2hat(j)+3hat(j))`
`rArr |b|=sqrt(4+16+36)=sqrt(56)=2sqrt(14)` .
1095.

The shaded region shown in fig. is given by the inequation

Answer»

1)`14x + 5Y GE 70, y ge 14 and x-y ge 5`
2)`14x + 5y le 70, y le 14 and x-y ge 5`
3)`14x + 5y ge 70, y le 14 and x-y ge 5`
4)`14x + 5y ge 70, y le 14 and x-y le 5`

Answer :D
1096.

Let A, B be matrics of order 3x3 such that A' =-A and B'=B then matrix lamdaAB+3BA is skew symmetric if lamda =

Answer»

3
-3
3,-3
None

Answer :A
1097.

Two lines given by the joint equation ax^(2)(b-c)-xy(ab-bc)+cy^(2)(a-b)=0 are

Answer»

`a(b-C)x-c(a-b)y=0, x+y=0`
`x+y=0, x-y=0`
`a(b-c)x-c(a-b)y=0, x-y=0`
NONE of these

Answer :C
1098.

Family of curves y=e^x(A cos x + B sinx) represents the differential equation :

Answer»


ANSWER :`y" - 2Y' + 2y = 0`
1099.

Equation of plane passing through (x_(1),y_(1),z_(1)) and parallel to two lines with direction Ratios a_(1),b_(1),c_(1) and a_(2),b_(2),c_(2) is

Answer»

`|{:(X-a_(1),y-b_(1),Z-c_(1)),(a_(1)-a_(2),b_(1)-b_(2),c_(1)-c_(2)),(1,1,):}|=0`
`|{:(x-x_(1),y-y_(1),z-c_(1)),(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)):}|=0`
`|{:(x,y,z),(x-x_(1),y-y_(1),z-z_(1)),(a_(1)-a_(2),b_(1)-b_(2),c_(1)-c_(2)):}|=0`
`a_(1)a_(2)(x-x_(1))+b_(1)b_(2)(y-y_(1))+c_(1)c_(2)(z-z_(1))=0`

Answer :B
1100.

The perimeter of the triangle with vertices at (1,0,0),(0,1,0)and (0,0,1) is

Answer»

3
2
`2sqrt(2)`
`3sqrt(2)`

ANSWER :D