Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

951.

Evaluate the following determinants. [[-18,17,19],[3,0,0],[-14,5,2]]

Answer»

Solution :`[[-18,17,19],[3,0,0],[-14,5,2]]`
`-3[[17,19],[5,2]]`
(Expanding along 2ND ROW)
=-3(34-95)
(-3)(-61)=183
952.

Solve the following differential equations. x(x-1)(dy)/(dx)-(x-2)y=x^(3)(2x-1)

Answer»

`y((X-1))/(x^(2)) = x^(2) - x + C`
`y((x-1))/(x^(2)) = x^(2) + x + c`
`y((x+1))/(x^(2)) = x^(2) - x + c`
`y((x-1))/(x^(2)) = x^(2) + x + c`

ANSWER :A
953.

Let h(x) =f(x)-a(f(x))^(3) for every real number x h(x) increase as f(x) increses for all real values of x if

Answer»

`a in (0,3)`
`a in (-2,2)`
`[3,oo)`
none of these

Solution :`HH(X) =-F(X)=af(x)^(2)+a(f(x))^(3)`
or `h(X)=f(x)-2af(x)f(x)+3a(f(x))^(2)f(x)`
`=f(x)[3a(f(x))^(2)-2af(x)+1]`
Now h(x) increase if f(x) increase and
`3a(f(x))^(2)-2af(x)+1gt0for all x in R`
or `3agt0 and 4A^(2)-12ale0`
or `AGT0 and a in [0,3]`
or `a in [0,3]`
954.

Find intsqrt(3-2x-x^(2))dx

Answer»


Answer :`(1)/(2)(x+1) sqrt(3-2x-x^(2))+2 SIN^(-1)((x+1)/(2))+c`
955.

If alpha(theta) epsilon R & beta(theta),theta epsilon R-{2n pi-(pi)/2, n epsilin I} are functions satistying (1+x)sin^(2)theta-(1+x^(2))sintheta +(x-x^(2))=0 then which of the following is/are correct?

Answer»

`lim_(theta to 0^(+)){(alpha(theta))^(1/(SINTHETA))+(beta(theta))^(1/(sintheta))}=1/(e^(2))`
`In (beta(theta))` is AODD `fn`
`lim_(theta to 0) (sum_(r=1)^(n) r^(1/(alpha^(2)(theta))))^(alpha^(2)(theta))=n, n epsilon N, h GE2`
`lim_(theta to pi//2)(alpha(theta)-(alpha(theta))^(alpha(theta)))/(1-alpha(theta)+In(alpha(theta)))=2`

Solution :`x^(2)-((1+sin^(2)theta)/(1+sintheta))+((sintheta-sin^(2)theta)/(1+sintheta))=0`
`x^(2)-x(sintheta+(1-sintheta)/(1+sintheta))+sintheta((1-sintheta)/(1+sintheta))=0`
`impliesx=sintheta , (1-sintheta)/(1+sintheta)`
`impliesalpha(theta)=sintheta, beta(theta)=(1-sintheta)/(1+sintheta)`
Hence the RESULTS follows.
956.

Assertion (A): The number of ways in which 5 boys and 5 girls can sit in a row so that all the girls sit together is 86400. Reason (R) : The number of ways in which m (first type of different) things and n (second type of different) things can be arranged in a row so that all the second type of things come together is n!""^((n+1))P_(m) The correct answer is

Answer»

Both A and R are true and R is the correct explanation of A
Both A and R are true but R is not correct explanation of A
A is true but R is FALSE
A is false but R is true

Answer :C
957.

Evaluate the following : [[-1,3,2],[1,3,2],[1,-3,-1]]

Answer»

SOLUTION :`[[-1,3,2],[1,3,2],[1,-3,-1]]`
`[[-2,0,0],[1,3,2],[1,-3,-1]] (R_1~~R_1-R_2)`
=`-2[[3,2],[-3,-1]]=-2(-3+6)=-6`
958.

The term independent of x in the expansion of (1 + x)^n (1 + 1/x)^n is

Answer»

`C_0^2 + C_1^2 + C_2^2 + ……….+C_n^2`
`""^(2N)C_n`
`(1.3.5…..(2n - 1))/(N!) 2^n`
All of the above

Answer :B
959.

Gross calorific value and physiological value of carbohydrate and liqid is :-

Answer»

4.1 KCAL, 4.0 Kcal and 9.45 Kcal, 9.0 Kcal
4.1 Kcal, 4.0 Kcal and 5.65 Kcal, 5.00 Kcal
4.1 Kcal, 4.0 Kcal and 5.65 Kcal, 4.0 Kcal
9.65 Kcal, 5.65 Kcal and 4 Kcal, 4.1 Kcal

Answer :A
960.

Solve graphically y gt 5

Answer»

SOLUTION :
961.

IF f(x) = (cosx)(cos2x)… (cosnx), then f(x)+sum_(t prop1)^(1)(rtanrx)f(x) is equal to

Answer»

F(x)
0
`-f(x)`
`2F(x)`

Answer :B
962.

Find the angle between the lines, whose direction cosines are given by the equation 3l+m+5n=0 and 6mn-2nl+5lm=0.

Answer»


ANSWER :`COS^(-1)(1)/(6)`
963.

Let f(x)=(3)/(x^(4)+3x^(2)+9) and g(x) =(x^(2))/(x^(4)+3x^(2)+9)

Answer»

`(1)/(2sqrt(3))LOG |(x^(2)-sqrt(3)x-3)/(x^(2)+sqrt(3)x-3)|+c`
`(1)/(3) tan^(-1) ((x^(2)-3x)/(3x))+c`
`(1)/(2sqrt(3)) log |(x^(2)-sqrt(3)x+3)/(x^(2)+sqrt(3)x+3)|+c`
`(1)/(3) tan^(-1)((x^(2)+3x)/(3x))+c`

ANSWER :B
964.

Let alpha" and "beta be the roots of the equation px^(2)+qx+r=0. If p,q, r in A.P. and alpha+beta=4, then alpha beta is equal to

Answer»

`-9`
`9`
`-5`
`5`

ANSWER :A
965.

Eco Wildlife preserve contains 5x zebras and 2x lions, where x is a positive integer. If the lions succeed in killing z of t he zebras, is the new ratio of zebras to lions less than 2 to 1 ? (1) z > x (2) z = 4

Answer»


ANSWER :A
966.

lim_(x rarr oo) (sqrt(x^(2) + 1) - root(3)(x^(3) + 1))/(root(4)(x^(4) + 1) - root(5) (x^(4) + 1)) equals :

Answer»

-1
0
1
None of these

ANSWER :B
967.

bar(a)=2bar(i)-3bar(j)+6bar(k) and bar(b)=-2bar(i)+2bar(j)-bar(k) then ("Proj"_(bar(b))bar(a))/("Proj"_(bar(a))bar(b))=.......

Answer»

`(3)/(7)`
`(7)/(3)`
3
7

Answer :B
968.

Let sec ^(2)((pi)/(9))+sec^(2)((2pi)/(9))+sec_(2)((4pi)/(9))=S and Sigma_(k-1)^(89) cos^(6)(k^(o))=(a)/(b) ,where a,b are coprime, then which of the following is/are correct?

Answer»

Number of positive divisors of a+B + S is 4
Number of positive divisors of a+b + S is 8
S is a perfect square
a+b is a prime number

Solution :`sec^(2)((PI)/(9))+sec^(2)((2pi)/(9))+sec^(2)((4pi)/(9))`
`=((cos.(2pi)/(9))^(2)(cos.(4pi)/(9))^(2) +(cos.(4pi)/(9))^(2)(cos.(pi)/(9))^(2)+cos^(2)((pi)/(9))cos^(2)((2pi)/(9)))/(cos.(pi)/(9)cos.(2pi)/(9)cos.(4pi)/(9))^(2)`
Using CD formulas
`=(1)/(4)([(cos.(2pi)/(3)+cos.(2pi)/(9))^(2)+(cos.(5pi)/(9)+cos.(pi)/(3))^(2)+(cos.(pi)/(3)+cos.(pi)/(9))^(2)])/(((1)/(64)))`
`= 16 ((3)/(4)+cos^(2).(pi)/(9)+cos^(2).(2pi)/(9)+cos^(2).(4pi)/(9)+cos.(pi)/(9)-cos^(2).(2pi)/(9)-cos.(4pi)/(9))`
`=16((3)/(9)+(3)/(2))`
`therefore cos .(pi)/(9)-cos^(2).(2pi)/(9)-cos.(4pi)/(9)=0 =36`
`underset(k=1)overset(89)Sigmacos^(6)(k^(@))= underset(k=1)overset(89)Sigmasin^(6)(k^(@))=(1)/(2)underset(k=1)overset(89)sum(SIN^(6)(k^(@))+cos^(6)(k^(@)))`
`(1)/(2)(underset(k=1)overset(89)Sigma(1-(3)/(4)sin^(2)(2k^(@))))=(89)/(2)-(3)/(8)underset(k=1)overset(89)Sigma(2k)^(@)`
`=(89)/(2)-(3)/(8)xx45`
`(a)/(b)=(221)/(8)`
`a221,b=8`
969.

If a pair of dice is thrown 5 times then find the probability of getting three doublets.

Answer»

Solution :In a single through of a pair of dice p(a DOUBLET) `=6/36=1/6` p (a non doublet) = 1-p9a doublet)`=1-1/6=5/6`
CLEARLY the given experiment is a binomial experiment with n=5
`p=1/6` and `q=5/6`
p(3 DOUBLETS in 5 THROW) = `^5C_3p^3q^2=10 cdot(1/6)^3(5/6)^2=250/6^5=125/3888`
970.

Compute the integral I_(n) = int_(0)^(a) (a^(2) - x^(2))^(n)dx , where n is a natural number.

Answer»


ANSWER :`(1)/(2)`
971.

The third term in the expansion of (1/x + x ^[log_10 x])^5 is 10^6 then x =

Answer»

`10^(-1)`
10
`10^2`
`10^3`

ANSWER :B
972.

If a circle of radius R passes through the origin O and intersects the coordinate axes at A and B, then the locus of the foot of perpendicular from O on AB is

Answer»

`(x^(2)+y^(2))^(2)=4R^(2)x^(2)y^(2)`
`(x^(2)+y^(2))^(3)=4R^(2)x^(2)y^(2)`
`(x^(2)+y^(2))(x+y) =R^(2)XY`
`(x^(2)+y^(2))^(2)=4Rx^(2)y^(2)`

Solution :Let the foot of perpendicular be P(h,k). Then, the SLOPE of line ` OP = (k)/(h)`

`therefore` Line AB is perpendicular to line OP, so slope of line `AB = -(h)/(k)`[`therefore` product of slope of two perpendicular line s is (-1)]
Now, the equation of line AB is
`y-k=-(h)/(k)(x-h)rArrhx+ky=h^(2)+k^(2)`
or`(x)/(((h^(2)+k^(2))/(h)))+(y)/(((h^(2)+k^(2))/(k)))=1`
So, point `A((h^(2)+k^(2))/(h),0) and B(0,(h^(2)+k^(2))/(h))`
`therefore Delta AOB` is a RIGHT angled triangle, so AB is ONE of the diameter of the circle having radius R (given).
`rArr AB = 2R`
`rArrsqrt(((h^(2)+k^(2))/(k))^(2)+((h^(2)+k^(2))/(k)))=2R`
`rArr (h^(2)+k^(2))^(2)((1)/(h^(2))+(1)/(k^(2)))=4R^(2)`
`rArr(h^(2)+k^(2)) =4R^(2) h^(2)k^(2)`
On replacing h by x and k by y, we get
`(x^(2)+y^(2))^(3)=4R^(2)x^(2)y^(2)`,
which is teh REQUIRED locus.
973.

If 1,alpha,alpha^2,…...,alpha^(n-1) are the n^(th) roots of unity, then the value of (3-alpha)(3-alpha^2)…...(3-alpha^(n-1)) is

Answer»

n
0
`(3^n-1)//2`
`(3^n+1)//2`

ANSWER :C
974.

Using problems are of the Inequality Type. Examples of this type are as follows:

Answer»

Solution :Let `P(n): tan n alpha gt n tan alpha`
Step I For `n=2, tan 2 alpha gt 2 tan alpha `
`rArr (2 tan alpha)/(1-tan^2alpha)-2tan alpha gt 0`
`rArr 2 tan alpha ((1-(1-tan^2alpha)/(1-tan^2alpha))gt0`
`rArr tan^2alpha.tan 2alpha gt 0 [because 0 lt alpha lt (pi)/(4) "for"n=2]`
`rArr tan 2 alpha gt 0 [because 0 lt 2 alpha lt (pi)/(2)]`
Which is true (`because` in first quadrant , `tan2alpha ` is POSITIVE)
Therefore , P(2)is true.
Step II ASSUME that P(k) is true , then `P(k): tan k alpha gt tan alpha`
Step III For `n=k+1`, we shall prove that `tan(k+1)alpha gt (k+1)tan alpha`
`becausetan (k+1)alpha=(tan k alpha +tan alpha)/(1-tank alpha tan alpha )` .......(i)
When `0 lt alpha lt (pi)/(4k)or 0 lt kalpha lt (pi)/(4)`
i.e., `0 lt tan k alpha lt1`, also `0 lt tan alpha lt 1`
`therefore tan k alpha tan alpha lt1`
`1-tan k alpha tan alpha gt 0 and 1-tan k alpha tan alpha lt 1`......(ii)
From Eqs. (i) and (ii) , we GET
`tan(k+1alpha gt (tan kalpha +tanalpha)/(1) gt tan kalpha +tanalpha gt k tan alpha +tan alpha ` [ by assumption step ]
`therefore tan (k+1)alpha gt (k+1)tan alpha`
Therefore , `P(k+1)` is true , Hence by the PRINCIPLE of mathematical induction P(n) is true for all `n in N`.
975.

By using the properties of definite integrals evaluate the integrals in exercise. overset(5)underset(-5)int|x+2|dx

Answer»


ANSWER :29
976.

The sumof the numbers formedfromthe digits 2,3,4,5 is

Answer»

1,03,124
93324
78456
1,15,576

Answer :A
977.

The plane x-2y + 3z= 2 makes an angle ... With Y-axis.

Answer»

`cos^(-1)""(2)/(sqrt(14))`
`SIN^(-1)""(2)/(14)`
`TAN^(-1)""(2)/(sqrt(14))`
`sin^(-1)""(2)/(sqrt(10))`

Answer :B
978.

Evaluate int " x cot"^(2) x dx

Answer»


ANSWER :`-` x cot x + LOG |SIN x| - `(x^(2))/(2) + `
979.

If A =[(1,2,1),(0,1,-1),(3,-1,1)] and AA' =I , then x+y is equal to

Answer»

O
I
A
`A^(2)`

ANSWER :A
980.

If P, Q, R lie on xy=c^(2), then the orthocentre of DeltaPQR lies on

Answer»

`x+y=0`
`2x+3y=C`
`xy=c^(2)`
NONE

ANSWER :C
981.

Choose the correct answer from the bracket. The antiderivative of (sqrtx + 1/sqrtx) equals

Answer»

`1/3 X^(1/3) +2X^(1/2) + C`
`2/3 x^(2/3) + 1/2 x^2 +c`
`2/3 x^(3/2) + 2x^(1/2) +c`
`3/2 x^(3/2) +1/2 x^(1/2) +c`

ANSWER :C
982.

Two tangentsare drawfroma pointP, 40 units fromthe centreof the circleand inclinedto eachother at60^(@). Whatis the area , to the nearet integer, of theregionAXBP ?

Answer»


ANSWER :72
983.

One plane is parallel to the vectors hat i + hat j + hat k and 2 hat i Other plane is parallel to the vectroshat i + hat j andhat i - hat k . The angle between the line of intersection of both the planes and the vector 2 hat i - hat j is ................

Answer»

`COS^(-1)"" (3/(sqrt(50)))`
`cos^(-1)""( 2/(sqrt(30)))`
`cos^(-1)""((1)/(sqrt(10)))`
`cos^(-1)""(19/(sqrt(30)))`

Answer :C
984.

Express in polar form (mod-Amplitude form) -1 -i

Answer»


ANSWER :B::C::D
985.

Digits 1, 2, 3, ….. 9 are written in a random order to form a 9 digit number. If the number happens to be divisible by 4. Then probability that it will be divisible by 36 is given by

Answer»

`2/9`
`3/4`
`7/9`
1

Answer :D
986.

Find the number of ways of arranging 8 persons around a circle

Answer»


ANSWER :`7!`
987.

int (x^(2))/(x^(6)+2x^(3)+2)dx=

Answer»


Answer :`(1)/(3)TAN^(-1)(X^(3)+1)+c`
988.

Find least non negative integer r such that 1936xx8789 -= r"(mod4)"

Answer»

SOLUTION :`1936xx8789-= R ("MOD "4) `
`1936xx8789 -= 0 "mod" 4 `
`r=0`
989.

int(sin^(3)x)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx))dx=

Answer»

`tan^(-1)(SECX+cosx)+C`
`log_(e)|tan^(-1)(secx+cosx)|+C`
`1/((secx+cosx)^(2))+C`
None of these

Solution :Let
`I=int_(sin^(3)x)/((COS^(4)x+3cos^(2)x+1)tan^(-1)(secx+cosx))dx`
`impliesI=int((sin^(3)x)/(cos^(2)x))/((cos^(2)x+3+sec^(2)x)tan^(-1)(secx+cosx))dx`
`impliesI=int1/(1+(secx+cosx)^(2))XX(sinx(1-cos^(2)x))/(cos^(2)x)xx1/(tan^(-1)(secx+cosx))dx`
`impliesI=int1/(tan^(-1)(secx+cosx))xx1/(1+(secx+cosx))^(2)xx(tanx secx -sinx)dx`
`impliesI=int1/(tan^(-1)(secx+cosx))d{tan^(-1)(secx+cosx)}`
`impliesI=log|tan^(-1)(secx+cosx)|+C`
990.

int_(-3)^(3) cot^(-1)x dx=

Answer»

`6PI`
`3PI`
3
0

Answer :B
991.

Rankof a null matrixis :

Answer»

1
0
does not EXIST
NONE of these

ANSWER :C
992.

Evalute : int (cos 2 x - cos2 alpha)/(cos x - cos alpha)dx.

Answer»

`2(sin X + x cos theta)+C`
`2(sin x - x cos theta)+C`
`2(sin x + 2x cos theta)+C`
`2(sin x - 2x cos theta)+C`

ANSWER :A
993.

Differntiate the following functions by proper substitution.sin^(-1)((2x)/(1+x^2))

Answer»

Solution :`y=sin^(-1)frac(2x)(1+x^2)`[PUT x=`tantheta`
`sin^(-1)frac(2 TAN theta)(1+tan^2theta)=sin^(-1)sin2theta`
`=2theta=2 tan^(-1)x`
`thereforedy/dx=2/(1+x^2)`
994.

The random variable X has a probability distribution P(X) of the following form, where k is some number.Determine the value of k P(x)={k, if x=0 ""2k, if x=1 ""3k if x=2 ""0, otherwise}

Answer»

SOLUTION :`SUMP(X)=1`
`RARR k+2k+3k+0=1 rArr k=1/6`
995.

Let A=[[2,4],[3,2]] , B=[[1,3],[-2,5]] , C=[[-2,5],[3,4]] Find each of the folowing AB

Answer»

SOLUTION :`AB=[[2,4],[3,2]],[[1,3],[-2,5]]=[[2xx1+4xx-2, 2xx3+4xx5],[3xx1+2xx-2, 3xx3+2xx5]]`
`=[[2-8, 6+20],[3-4, 9+10]]=[[-6,26],[-1,19]]`
996.

Solve the following Linear Programming Problems graphically : Minimise Z = 3x + 5y such that x+3y ge 3, x+y ge 2, x, y ge 0.

Answer»

<P>

ANSWER :The MINIMUM value of Z = 3x + 5Y is 7 at the POINT `P(3/2, 1/2)`
997.

Find the area of the region bounded by the curves y = x^(2) + 2, y = x, x = 0 and x = 3.

Answer»


ANSWER :`(21)/(2)`
998.

Read of the following two statements I: sqrt(3)x-y+4=0 is tangent to the circle x^(2)+y^(2)=4 II: y=(sqrt(m^(2)-1))x+-mr is tangent to the circle x^(2)+y^(2)=r^(2)

Answer»

I is true, II is true, II is CORRECT explanation of I.
I is true,II is true, II is not correct explanation of I.
I is FALSE, II is false
I is true , II is true

Answer :B
999.

For what value of k, the function f(x) ={:{(2x+1", "x gt2),(""k ", " x=2),(3x-1 ", "x lt2):}, is continuous at x=2.

Answer»


ANSWER :5
1000.

Evaluate the following integrals inte^(x)((x-1))/((x+1)^(3))dx

Answer»


ANSWER :`(E^(X))/((x+1)^(2))+C`