Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2051.

If a complex number z satisfies |z|^(2)+1=|z^(2)-1|, then the locus of z is

Answer»

the REAL AXIS
the imaginary axis
y = x
a circle

ANSWER :B
2052.

By vector method prove that altitudes of a triangle are concurrent.

Answer»


ANSWER :The 3 ALTITUDES are CONCURRENT at O.
2053.

A fair coin is tossed10 times. The probability of getting as many heads in the first 5 tosses as in the last 5 tosses is

Answer»

`(1)/(2^(10))`
`(1)/(2^(9))`
`(""^(10)C_(5))/(2^(10))`
`(1)/(2)`

ANSWER :C
2054.

If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(b+1)^(2),(c+1)^(2)),((a-1)^(2),(b-1)^(2),(c-1)^(2))|=0 then

Answer»

`(a-b)(b-c)(c-a)`
`2(a-b)(b-c)(c-a)`
`3(a-b)(b-c)(c-a)`
`-4(a-b)(b-c)(c-a)`

ANSWER :D
2055.

If 0ltxltpiand x ne(pi)/(2) , " then:" tan^(-1) (tanx)=...

Answer»

`X-PI`
`pi+x`
`x-(pi)/(2)`
`pi/2-x`

ANSWER :D
2056.

The volume of a tetrahedron (in cubic units) whose vertices are 4overset(^)i+5overset(^)j+overset(^)k, -overset(^)j+overset(^)k,3overset(^)i+9overset(^)j+4overset(^)k and -2overset(^)i+4overset(^)j+4overset(^)k is

Answer»

`14/3`
5
6
30

Answer :B
2057.

|{:(5^2,5^3,5^4),(5^1,5^2,5^3),(5^3,5^4,5^4):}|=.......

Answer»

`5^9`
`5^(12)`
`5^0`
0

Answer :D
2058.

If n is a positive integer, show that ( P + iQ)^(1//n) + ( P - iQ)^(1//n) = 2 ( P^(2) + Q^(2))^(1//2n)cos (1/n , tan . Q/P).

Answer»
2059.

A and B are two events such that P(A)=1/5 and P(AuuB)=2/5Find P(B) if they are mutually exclusive. a)1/5 b)2/5 c)3/5 d)4/5

Answer»

`1/5`
`2/5`
`3/5`
`4/5`

ANSWER :A
2060.

Prove the following : [[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]]=0

Answer»

SOLUTION :`[[1,bc,a(B+C)],[1,ca,b(c+a)],[1,AB,c(a+b)]] C_3rarrC_3+C_2`
`[[1,bc,ab+bc+ca],[1,ca,ab+bc+ca],[1,ab,ab+bc+ca]]`
=`(ab+bc+ca)[[1,bc,1],[1,ca,1],[1,ab,1]]`=0
`(therefore C_1 and C_3 are identical)`
2061.

If matrix A_(lamda)=[(lamda+1,lamda-2),(lamda-1,lamda)], lamda epsilonN then the valueof |A_(1)|+|A_(2)|+|A_(3)|+…………….+|A_(300)|is

Answer»

`(299)^(2)`
`(300)^(2)`
`2(300)^(2)`
`(301)^(2)`

Solution :`|A_(2)|=LAMDA(lamda+1)-(lamda-1)(lamda-2)=4lamda-2`
`|A_(1)|+|A_(2)|+|A_(3)|+……+|A_(300)|`
`implies4{1+2+3+…….+300|-600`
`implies4.(300.301)/2-600=2(300)^(2)`
2062.

Danielle is a civil enginner for Dastis Dynamic Construction, Inc. She must create blueprints for a wheelchair accessible ramp leading up to the entrance of amall that she and her group are building. The ramp must be exactly 100 meters in length and make a 20^@ angle with the level ground. What is the horizontal distance, in meters, from the start of the ramp to the point level with the start of the ramp immediately below the entrance of the mall, rounded to the nearest meter? (Disregard units when inputting your answer)

Answer»


ANSWER :94
2063.

A and B are two events such that P(A) = (1)/(4), P(A | B)= (1)/(2) , P(B | A)= (2)/(3), then P(B)= ………….

Answer»

`(1)/(2)`
`(1)/(6)`
`(1)/(3)`
`(2)/(3)`

Answer :C
2064.

If the roots of x^(3) - 42x^(2) + 336x - 512 = 0 , are in increasing geometric progression, its common ratio is

Answer»

2
3
4
6

Answer :C
2065.

1/(2!)-1/(3!)+1/(4!) .....oo =

Answer»

`E^(1/2)`
`e^(-2)`
`e^(-1)`
`e^((-1)/2)`

ANSWER :C
2066.

Let S is the region of points which satisfies y^(2)lt16x,x lt4 and (xy(x^(2)-3x+2))/(x^(2)-7x+12)gt0. Its area is

Answer»

`(8)/(3)`
`(64)/(3)`
`(32)/(3)`
none of these

Solution :`(xy(x^(2)-3x+2))/(x^(2)-7x+12)gt0`
`rArr""(xy(x-1)(x-2))/((x-3)(x-4))gt0`
`rArr""{{:(ygt0",","if",(x(x-1)(x-2))/((x-3)(x-4))gt0),(ylt0",","if",(x(x-1)(x-2))/((x-3)(x-4))lt0):}`
`rArr""{{:(ygt0",","if",x in(0,1)uu(2,3)uu(4,oo)),(ylt0",","if",x in(-oo,0)uu(1,2)uu(3,4)):}`
`y^(2)lt16x" is interior of the parabola "y^(2)=16x`
Region is as shown in the following FIGURE:

From the figure, required AREA
= HALF of the area of the region bounded by
`y^(2)=16x and x=4`
2067.

I= int ( sqrt( alpha^(2) - x^(2) ) )/( x^4) dx.

Answer»


Answer :`I= - ((a^(2) -X^(2) )^(3//2) )/( 3A^(2) x^(3) ) + C`.
2068.

If z and omega are two nonzero complex numbers such that |zomega|=1 and "Arg" (z)-Arg "(omega) =pi//2 " then " barzomega =

Answer»

1
`-1`
i
`-i`

ANSWER :D
2069.

Evaluate: inte^(x)((x-1)/x^(2)) dx

Answer»


ANSWER :`= E^(X) (1)/( x) + C`
2070.

which of the following is true for x in [0,1]?

Answer»

`sin^(-1)x+x^(2)-x(9-x^(2))/(3)le0`
`sin^(-1)x+x^(2)-x(9-x^(2))/(3)ge0`
`sin^(-1)x+x^(2)-x(9-x^(2))/(3)le0`
`sin^(-1)x+x^(2)-x(9-x^(2))/(3)ge0`

Solution :Let `f(x)=sin^(-1)x+x^(2)-3x+(x^(3))/(3)`
`THEREFORE f(X)=(1)/sqrt(1-x^(2))+2x-3+x^(2)`
Thus f(X)=0 for some x=`x_(1) in (0,1)`

`f(x)=(x)/(1-x^(2))^(3//2)+2+2xgt 0 forall x in (0,1)`
Thus x=`x_(1)`is the point of MINIMUM
f(0)=0,f(1)=`pi//2-5//3lt0`
f(X) is global maxima `forall x in [0,1]`.Thus
`f(X)lef(X)XIN [0,1]or sin ^(-1)x+x^(2)-3x+x^(3)//3le0`
or `sin^(-1)x+x^(2)LEX(9-x^(2))/(3)forall x in [0,1]`
2071.

|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Answer»


ANSWER :`= ( a-b)(b-c) (c-a) `
2072.

Find the area of the surface obtained by revolving a loop of the curve 9ax^(2)= y (3a-y)^(2) about the y-axis

Answer»


ANSWER :`= 3PI a^(2)`
2073.

State which of the following are positive ?cosec 159^@

Answer»

SOLUTION :`COSEC 159^@` is +ve as `159^@` lies in 2ND QUANDRANT and cosec is +ve there.
2074.

Let f(x+2)=3x -4,then find f^(-1) (1)

Answer»
2075.

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

Answer»

0
15
1
10

Answer :C
2076.

If |a.b| = |a xx b| then (a,b) = pi //4

Answer»
2077.

For |x| lt 1/2 , the value of the fourth term of (1 - 2x)^(-3//4) is

Answer»

`-77/16 x^3`
`16/77 x^3`
`77/16 x^3`
`-16/77x^3`

ANSWER :C
2078.

State the order of [a b c] matrices.

Answer»

SOLUTION :`(1xx3)`
2079.

The values of k for which each root of the equation, x^(2)-6kx+2-2k+9k^(2)=0 is greater than 3, salways satisfy the inequality :

Answer»

`7-9y GT0`
`11-9ylt0`
`29-11ygt0`
`29-11ylt0`

ANSWER :B
2080.

If z (x,y) = x tan ^(-1) (xY), x = t ^(2), t y = se ^(t), s , t in R. Find (del z)/( del s) and (del z)/(del t) at s = t =1.

Answer»


Answer :`= (3e)/( 1 + E ^(2)) + 2 tan ^(-1) e `
2081.

Obtain the equation of a hyperbola with coordinate axes as principal axes given that the distances of one of its vertices from the foci are 9 and 1 units.

Answer»


ANSWER :12X^(2)-4Y^(2)-24x+32y-127=0`
2082.

Evaluate int(x + (1)/(x))^(3) dx, x gt 0

Answer»


Answer :`(x^(4))/(4)+3.(x^(2))/(2)+3log|x|-(1)/(2x^(2))+C`
2083.

Evaluate int e^(-2x) [2 tanx - sec^(2) x]dx

Answer»


ANSWER :`-E^(-2X)tanx+c`
2084.

If x ge 0, y ge 0, 2x le x +y le 8, 2x+y le 10, then the minimum value of F=5x+7y is

Answer»

10
14
6
5

Answer :A
2085.

A plane meets the co-ordinate axes at A,B,C and (alpha,beta,gamma) is the centroid of the triangle ABC. Then the equation of the plane is

Answer»

`alphax+betay+gammaz=1`
`(x)/(alpha)+(y)/(beta)+(Z)/(gamma)=1`
`(x)/(alpha)+(y)/(beta)+(z)/(gamma)=3`
`(3X)/(alpha)+(3y)/(beta)+(3Z)/(gamma)=1`

Answer :C
2086.

Solve system of linear equations, using matrix method in examples 7 to 14 5x+2y=3 3x+2y=5

Answer»


ANSWER :x=-1 and y=4
2087.

The three equations: x + y +z = 3, x^(3) + y^(3) + z^(3) = 15 and x^(4) + y^(4) + z^(4) = 35 has a real solution x,y,z for which x^(2) + y^(2) + z^(2) lt 10. Find the value of (x^(5) + y^(5) + z^(5))

Answer»


ANSWER :83
2088.

Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4.

Answer»


ANSWER :`(1)/(15)`
2089.

Classify 10 Newton measures as scalar and vector.

Answer»

SOLUTION :Force-vector
2090.

Let P(n) denote the statement that n^(2)+n is odd. It is seen that P(n) = P(n + 1). P(n) is true for all.

Answer»

`NGT1`
N
`ngt2`
NONE of these

Answer :D
2091.

int_(0)^(1) cot^(-1) (1-x+x^(2)) dx=?

Answer»

`(PI)/(2) +LOG 2`
`(pi)/(2) -log 2`
`-(pi)/(2) - log 2`

ANSWER :C
2092.

A line passes through (2,2) and is perpendicular to the line 3x+y=3, its y-intercepts is__________

Answer»

1
`(4)/(3)`
`(2)/(3)`
`(1)/(3)`

Answer :B
2093.

Let A and B be two finite sets such that n(A) = 20, n(B) = 28 and n(A ∪ B)=36, then find n(A ∩ B).

Answer»


ANSWER :12
2094.

Giventhe continuousfuunctiony= f(x) ={{:( x^(2) +10x+8, x le -2),( ax^(2)+bx +c, -2ltxlt 0","a ne 0) ,( x^(2) + 2x, xge 0):} if a line L touches the graph of y=f(x)at three points , thenthe slope of theline L is equal to

Answer»

1
2
4
6

Answer :C
2095.

Giventhe continuousfuunctiony= f(x) ={{:( x^(2) +10x+8, x le -2),( ax^(2)+bx +c, -2ltxlt 0","a ne 0) ,( x^(2) + 2x, xge 0):} if a line L touches the graph of y=f(x)at three points , then thevalueof ( a+b+c) is equal to

Answer»

`5sqrt(2)`
5
6
7

Answer :D
2096.

Giventhe continuousfuunctiony= f(x) ={{:( x^(2) +10x+8, x le -2),( ax^(2)+bx +c, -2ltxlt 0","a ne 0) ,( x^(2) + 2x, xge 0):} if a line L touches the graph of y=f(x)at three points , then ify= f(x)isdifferentiableat x=0, thenthe valueof B

Answer»

is -1
is 2
is 4
connot bedetermined

ANSWER :B
2097.

The point equidistant to the lines 4x+3y+10=0, 5x-12y+26=0, 7x+24y-50=10 is

Answer»

(1, -1)
(1, 1)
(0, 0)
(0, 1)

ANSWER :C
2098.

The set of values of alpha (alpha gt 0) for which the inequality int_(-alpha)^(alpha) e^x dx gt 3/2 holds true is :

Answer»

`(0, oo)`
`(2,oo)`
`(ln2, oo)`
None of these

SOLUTION :`2e^(2ALPHA) - 3e^(alpha) - 2 gt 0 RARR E^(alpha) lt -1/2 " or " e^(alpha) gt 2`
But `e^(alpha) gt 0 AA alpha in R rArr e^alpha gt 2`
`i.e. alpha in (log2, oo)`
2099.

Statement I If f (x) = int_(0)^(1) (xf(t)+1) dt, then int_(0)^(3) f (x) dx =12 Statement II f(x)=3x+1

Answer»

Statement I is true, Statement II is ALSO true, Statement II is the correct explanation of Statement 1.
Statement I is true, Statement II is also true , Statement II is not the correct explanation of Statement II.
Statement I is true, Statement II is FALSE
Statement I is false , STATEMENTII is true

Answer :C
2100.

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))).

Answer»


ANSWER :`(SQRT(1-x^(2)))/(2(1+x^(2)))`