InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 26551. |
Evaluate the integrals by using substitution int_(0)^(pi/2)sqrt(sinphi)cos^(3)phidphi |
| Answer» | |
| 26553. |
Differentiate the functions(log x)^(x) + x^(log x) |
|
Answer» |
|
| 26554. |
If (a^(n + 1) + b^(n + 1))/(a^(n) + b^(n)) is the arithmetic mean between a and b, then n = |
|
Answer» 2 |
|
| 26556. |
Match the following |
|
Answer» a,B,c |
|
| 26557. |
Write the general form of the equation of a line. Write the condition on its coefficients. |
|
Answer» |
|
| 26558. |
Functions f,g:RtoR are defined ,respectively, by f(x)=x^2+3x+1,g(x)=2x-3,find fof. |
|
Answer» |
|
| 26560. |
(1)/(x(x - 1 ) (x + 2 ) …. (x+ n))= (A_0 )/( x )+(A _ 1 )/(x + 1 )+…….. ( A _ n) /(x +n ) ,0leile r rArr A _ ris equalto |
|
Answer» ` ( -1) ^ r(r!)/( (n - r) !) ` ` rArr(1)/(x(x+1)(x+2)…(x+r)…(x+n)) = (A_0)/(x)+ (A_1)/((x+1))+ …. + (A_n)/(x+n ) ` ` (1)/(x(x+1)(x+2)… (x+r - 1 )(x + r + 1 )… (x + n))`= `rArr(A_0 (x + r ))/(x)+ (A_1(x+r))/(x+1) + ... + (A_r(x+r))/((x+r)) +(A_(r +1)(x+r))/(x + r + 1 )+... + (A_n(x+r))/(x + n) ` ` rArr (1)/(x(x+1)(x+2)...(x+n)) = (A_0 (x + r ))/(x)+ (A_1(x+r))/(x + 1 )+... + A_r + A _ (r + 1 )((x + r ))/((x+r + 1)) + ... + A_n((x + r ))/((x + n)) ` Substituting`x =- r `in ABOVEEQUATION, we GET, ` rArr(1)/((-r)(- r + 1 ) (-r + 2 )... (-r + r - 1 )(-r + r + 1 )... (-r + n)) ` `= 0 + 0+ ...+ A _ r + 0 ` `thereforeA_r= (1 ) /((-1) ^r r (r -1) ... (-1).(1) (2) ... (-r + n)) ` ` A _r =((-1) ^r)/((r) (r - 1 )...(1).(1)(2)...(n-r )) ` `= ((-1) ^r ) /(r! (n - r) ! ) ` |
|
| 26561. |
On the set Q^(+) of all positive rational number define an operation * on Q^(+)by a*b =(ab)/(2) forall a,b in Q^(+) Show that (i) * is a binary operation on Q^(+)(ii) * is commutative (iii)* is associative Find the identify element in Q^(+) for * Whast is the inverseof a in Q^(+)? |
|
Answer» `a*b=2 rarr(ab)/(2)=2 rarr b=4/a rarr a^(-1) =(4)/(a)` |
|
| 26562. |
If sqrt(x^(2) + y^(2))=a. e^(tan^(-1)((y)/(x))), a gt 0 then the value of y''(0) is……. |
|
Answer» `(a)/(2) E^(-(PI)/(2))` |
|
| 26563. |
Differentiate cotx-secx-log_10x |
|
Answer» SOLUTION :`y=cotx-secx-log_10x` `dy/dx=-cosec^2x-secx CDOT tanx-1/xlog_10e` |
|
| 26564. |
Line x =0 divides the region mentioned above in two parts,The ratio of the area left-hand side of the line to that of right-hand side of the line is- |
|
Answer» ` (2+PI ): pi ` |
|
| 26565. |
Find dy/dx,if y=12(1-cost),x=10(t-sint).pi/2lttltpi/2 |
| Answer» SOLUTION :`dy/dx=12[0+sint)=12sint,dx/dt=10(1-cost)thereforedy/dx=(dx//dt)/(dx//dt)=(12sint)/(10(1-cost))=(6xx2sin(1//2)COS(1//2))/(5xx2sin^2(1//2))=6/5cot(1//2)` | |
| 26568. |
overset(sqrt(3))underset(1)int (dx)/(1+x^(2))=..... |
| Answer» Answer :D | |
| 26569. |
Ifcos^(-1)((x)/(5)) + "cosec"^(-1) ((5)/(4)) =ppi/2then x=……. |
|
Answer» 1 |
|
| 26570. |
If a vector vecr is in the direction of X- axis then find its direction cosines. |
|
Answer» |
|
| 26571. |
Compute P(A/B) if P (B)= 0.5 and P(AnnB) = 0.32 |
|
Answer» <P> SOLUTION :P(A/B)=(P`(ANNB))/(P(B))`=0.32/0.5=32/50=16/25 |
|
| 26572. |
If a plane passes through the point (1, 1, 1) and is perpendicular to the line (x - 1)/3 = (y - 1)/0 = (z - 1)/4, then its perpendicular distance from the origin is - |
|
Answer» `3/4` `3(x - 1) + 0(y - 1) + 4(Z -1) = 0` `3X + 4z - 7 = 0` Perpendicular distance from the origin is- `=|(-7)/5| = 7/5`. |
|
| 26573. |
The parabolas y^(2)=4x,x^(2)=4y divide the square region bounded by the lines x = 4, y = 4 and the co-ordinate axes. If S_(1),S_(2),S_(3) are respectively the areas of these parts numbered from top to bottom then S_(1):S_(2):S_(3) is |
|
Answer» `2:1:1` |
|
| 26574. |
Negation of the statement (p ^^ r) rarr (r vv q) is |
|
Answer» <P>`(p ^^ r) ^^ (~r ^^ ~Q)` |
|
| 26575. |
IfA=[{:(1,2),(4,2):}], then show that |2A|=4|A|. |
| Answer» | |
| 26577. |
If veca,vecb,vecc are unit vectors such that veca+vecb+vecc = vec0, find the value of veca.vecb+vecb.vecc+vecc.veca. |
|
Answer» Solution :`veca+vecb+vecc` = 0 `IMPLIES(veca+vecb+vecc)^2` = 0 `|veca|^2+|vecb|^2+|vecc|^2 + 2(veca.vecb+vecb.vecc+vecc.veca)` = 0 `implies 2(veca.vecb+vecb.vecc+vecc.veca)` = -(1+1+1) `(THEREFORE |veca|^2` = `|vecb|^2` = `|vecc|^2` =1 `implies veca.vecb+vecb.vecc+vecc.veca` = -3/2. |
|
| 26578. |
{:("Column A","", "Column B"),("The average of three number if the greatest is 20",,"The average of the numbers if the greatest is 2"):} |
|
Answer» If column A is larger |
|
| 26579. |
Value of lim _(hto0) (int _(0)^(x-he ^(-1//h))dx - int _(0)^(pi) x ^(2)e^(-x ^(2))dx )/(he^(-1//h)) in equal to: |
|
Answer» `PI (1-pi^(2)) E ^(-pi^(2))` |
|
| 26580. |
If overline(a), overline(b), overline(c) are non-collinear vectors such that for some scalars x, y, z, xoverline(a)+yoverline(b)+zoverline(c)=overline(0), then |
|
Answer» `x=0, yne0,zne0` |
|
| 26581. |
By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)log(1+cosx)dx |
|
Answer» |
|
| 26582. |
If the tangent at the point (1,2) on the ellipse 3x^(2)+4y^(2)=19is also a tangent to the parabola y^(2)-kx=0 then k = |
|
Answer» `(57)/(16)` |
|
| 26583. |
number of ways in which 4 prizes can be distributed among 5 students If no student gets all the prizes is |
|
Answer» 625 |
|
| 26584. |
Let two independent eventsA and Bsuch that P(A)=0.3,P(B)=0.6.Find P(A and B) |
|
Answer» <P> SOLUTION :GIVEN that P (A) = 0.3 and P(B) = 0.6therefore `P(A^c)`= 1-P(A) = 1-0.3=0.7`P(B^c)` = 1-P(B) = 1-0.6=0.4 =P(A)P(B) =`0.3xx0.6`=0.18 |
|
| 26586. |
I : The coefficient of x^2 in (sqrtx^3 + 2//x)^6 is 60. II : The coefficient ofx^(-6) in (x^4 -1//x^2)^15 is -1365. |
|
Answer» only I is true |
|
| 26587. |
Find the equation of the circle passing through the origin, having its centre on the line x+y=4 and intersecting the circle x^2+y^2-4x+2y+4=0 orthogonally. |
|
Answer» |
|
| 26588. |
The vertices of a triangle are A(1,0,0),B(0,2,0),C(0,0,3). If the direction ratios of the line joining the orthoceutre and circumcentre of the triangle are a, b, -111, the a+b is equal to |
|
Answer» 5 |
|
| 26589. |
Show that each of the followingexpressions is a soluton of the corresponding given differential equation (i) y=2x^(2),xy'=2y (ii) y=ae^(x)+be^(-x), y''-y=0 |
|
Answer» (II) 0 |
|
| 26590. |
Consider the functin f (x) = (ln x)/(8) - ax +x ^(2) and a ge 0 is a real constant : |
|
Answer» |
|
| 26592. |
If bar(P),bar(Q),bar(R) and bar(S) are points whose position vectors are bar(i)-bar(k),-bar(i)+2bar(j),2bar(i)-3bar(k)and 3bar(i) - 2bar(j) - bar(k), then find component of bar(RS) on bar(PQ). |
|
Answer» |
|
| 26593. |
T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), thenAA n in {1,2,3...}: |
|
Answer» `T_(n ) GT 1/2 LN 2` |
|
| 26594. |
x(x^(2) - 1)(dy)/(dx) = 1, y = 0 when x = 2. |
|
Answer» |
|
| 26595. |
Let A = ((2.1,2.7,1.3),(3.1,3.2,1.7),(2.1,2.5,2.9)). The sum of values of x for which A - xI_(3) is singular is _______ |
|
Answer» |
|
| 26596. |
Let f(x) =x^(2) , x in (-1,2) Then show that f(x) has exactly one point of local minimabut global maximum Is not defined. |
| Answer» | |
| 26597. |
C_0 - 2^3 . C_1 +3^2. C_2 - …. + (-1)^n (n+1)^2 . (C_n)= |
| Answer» Answer :A | |
| 26598. |
int_(0)^(pi//2) (sin 8x.log(cot x))/(cos 2 x)dx= |
|
Answer» 0 |
|
| 26599. |
lim_(n rarr oo) ((2)/(3) + ((2)/(3))^(2) + ((2)/(3))^(3) + ……. + ((2)/(3))^(n)) is : |
|
Answer» 1 |
|
| 26600. |
How many roots foes the following equation possess 3 ^(|x|) (|2-x||)=2 ? |
|
Answer» 2 |
|