Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26551.

Evaluate the integrals by using substitution int_(0)^(pi/2)sqrt(sinphi)cos^(3)phidphi

Answer»
26552.

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Answer»


ANSWER :`(PI)/(12)`
26553.

Differentiate the functions(log x)^(x) + x^(log x)

Answer»


Answer :`(LOGX)^(x-1)[1 + LOG x.log (log x)]+ 2X^(log x-1) XX log x`
26554.

If (a^(n + 1) + b^(n + 1))/(a^(n) + b^(n)) is the arithmetic mean between a and b, then n =

Answer»

2
`-2`
0
2

Answer :C
26555.

Integrate the functions (sqrt(tanx))/(sinxcosx)

Answer»


ANSWER :`2sqrt(TANX)+C`
26556.

Match the following

Answer»

a,B,c
b,c,a
c,a,b
a,c,a

Answer :B
26557.

Write the general form of the equation of a line. Write the condition on its coefficients.

Answer»


SOLUTION :NA
26558.

Functions f,g:RtoR are defined ,respectively, by f(x)=x^2+3x+1,g(x)=2x-3,find fof.

Answer»


SOLUTION :N/A
26559.

Match the following

Answer»

a,B,C
b,c,a
c,a,b
a,c,b

Answer :C
26560.

(1)/(x(x - 1 ) (x + 2 ) …. (x+ n))= (A_0 )/( x )+(A _ 1 )/(x + 1 )+…….. ( A _ n) /(x +n ) ,0leile r rArr A _ ris equalto

Answer»

` ( -1) ^ r(r!)/( (n - r) !) `
` (-1) ^r (r!)/(r!(n-r )!) `
` (1)/(r!(n-r)!)`
`(r!)/((n-r)!)`

Solution : ` (1)/(x (x +1)(x+2)… (x+n))= (A_0)/(x)+ (A_1)/((x+1)) + … + (A_n)/(x+n) ,0le ILE r `
` rArr(1)/(x(x+1)(x+2)…(x+r)…(x+n)) = (A_0)/(x)+ (A_1)/((x+1))+ …. + (A_n)/(x+n ) `
` (1)/(x(x+1)(x+2)… (x+r - 1 )(x + r + 1 )… (x + n))`=
`rArr(A_0 (x + r ))/(x)+ (A_1(x+r))/(x+1) + ... + (A_r(x+r))/((x+r)) +(A_(r +1)(x+r))/(x + r + 1 )+... + (A_n(x+r))/(x + n) `
` rArr (1)/(x(x+1)(x+2)...(x+n)) = (A_0 (x + r ))/(x)+ (A_1(x+r))/(x + 1 )+... + A_r + A _ (r + 1 )((x + r ))/((x+r + 1)) + ... + A_n((x + r ))/((x + n)) `
Substituting`x =- r `in ABOVEEQUATION, we GET,
` rArr(1)/((-r)(- r + 1 ) (-r + 2 )... (-r + r - 1 )(-r + r + 1 )... (-r + n)) `
`= 0 + 0+ ...+ A _ r + 0 `
`thereforeA_r= (1 ) /((-1) ^r r (r -1) ... (-1).(1) (2) ... (-r + n)) `
` A _r =((-1) ^r)/((r) (r - 1 )...(1).(1)(2)...(n-r )) `
`= ((-1) ^r ) /(r! (n - r) ! ) `
26561.

On the set Q^(+) of all positive rational number define an operation * on Q^(+)by a*b =(ab)/(2) forall a,b in Q^(+) Show that (i) * is a binary operation on Q^(+)(ii) * is commutative (iii)* is associative Find the identify element in Q^(+) for * Whast is the inverseof a in Q^(+)?

Answer»


SOLUTION :`a*e=a RARR e=2`
`a*b=2 rarr(ab)/(2)=2 rarr b=4/a rarr a^(-1) =(4)/(a)`
26562.

If sqrt(x^(2) + y^(2))=a. e^(tan^(-1)((y)/(x))), a gt 0 then the value of y''(0) is…….

Answer»

`(a)/(2) E^(-(PI)/(2))`
`AE^((pi)/(2))`
`(-2)/(a) e^(-(pi)/(2))`
Does not exist

Answer :C
26563.

Differentiate cotx-secx-log_10x

Answer»

SOLUTION :`y=cotx-secx-log_10x`
`dy/dx=-cosec^2x-secx CDOT tanx-1/xlog_10e`
26564.

Line x =0 divides the region mentioned above in two parts,The ratio of the area left-hand side of the line to that of right-hand side of the line is-

Answer»

` (2+PI ): pi `
` (2-pi) :pi `
` 1:1 `
`(pi+2) :pi `

ANSWER :D
26565.

Find dy/dx,if y=12(1-cost),x=10(t-sint).pi/2lttltpi/2

Answer»

SOLUTION :`dy/dx=12[0+sint)=12sint,dx/dt=10(1-cost)thereforedy/dx=(dx//dt)/(dx//dt)=(12sint)/(10(1-cost))=(6xx2sin(1//2)COS(1//2))/(5xx2sin^2(1//2))=6/5cot(1//2)`
26566.

Find the coefficient of x^6 in the expansion of (1+ x^2 - x^3)^8

Answer»


ANSWER :84
26567.

Solve (dy)/(dx)=(y(x-2y))/(x(x-3y))

Answer»


ANSWER :`KX^(2)E^(-X)/(y)`
26568.

overset(sqrt(3))underset(1)int (dx)/(1+x^(2))=.....

Answer»

`(PI)/(3)`
`(2pi)/(3)`
`(pi)/(6)`
`(pi)/(12)`

Answer :D
26569.

Ifcos^(-1)((x)/(5)) + "cosec"^(-1) ((5)/(4)) =ppi/2then x=…….

Answer»

1
3
5
4

Answer :D
26570.

If a vector vecr is in the direction of X- axis then find its direction cosines.

Answer»


ANSWER :(1,0,0) (-1,0,0)
26571.

Compute P(A/B) if P (B)= 0.5 and P(AnnB) = 0.32

Answer»

<P>

SOLUTION :P(A/B)=(P`(ANNB))/(P(B))`
=0.32/0.5=32/50=16/25
26572.

If a plane passes through the point (1, 1, 1) and is perpendicular to the line (x - 1)/3 = (y - 1)/0 = (z - 1)/4, then its perpendicular distance from the origin is -

Answer»

`3/4`
`4/3`
`7/5`
`1`

SOLUTION :Equation of the PLANE which PASSES through (1,1,1) and dr's of its normal are 3,0,4 is-
`3(x - 1) + 0(y - 1) + 4(Z -1) = 0`
`3X + 4z - 7 = 0`
Perpendicular distance from the origin is-
`=|(-7)/5| = 7/5`.
26573.

The parabolas y^(2)=4x,x^(2)=4y divide the square region bounded by the lines x = 4, y = 4 and the co-ordinate axes. If S_(1),S_(2),S_(3) are respectively the areas of these parts numbered from top to bottom then S_(1):S_(2):S_(3) is

Answer»

`2:1:1`
`1:1:1`
`1:2:1`
`1:2:3`

ANSWER :B
26574.

Negation of the statement (p ^^ r) rarr (r vv q) is

Answer»

<P>`(p ^^ r) ^^ (~r ^^ ~Q)`
`~(p ^^ r) RARR ~(r VV q)`
`~(p vv r) rarr ~(r ^^ q)`
`(p ^^ r) vv (r ^^ q)`

Answer :A
26575.

IfA=[{:(1,2),(4,2):}], then show that |2A|=4|A|.

Answer»
26576.

sum _(k =1) ^(3) cos ^(2) (2k -1) pi/12 is equal to

Answer»

0
`1/2`
`-1/2`
`3/2`

ANSWER :D
26577.

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc = vec0, find the value of veca.vecb+vecb.vecc+vecc.veca.

Answer»

Solution :`veca+vecb+vecc` = 0
`IMPLIES(veca+vecb+vecc)^2` = 0
`|veca|^2+|vecb|^2+|vecc|^2 + 2(veca.vecb+vecb.vecc+vecc.veca)` = 0
`implies 2(veca.vecb+vecb.vecc+vecc.veca)` = -(1+1+1)
`(THEREFORE |veca|^2` = `|vecb|^2` = `|vecc|^2` =1
`implies veca.vecb+vecb.vecc+vecc.veca` = -3/2.
26578.

{:("Column A","", "Column B"),("The average of three number if the greatest is 20",,"The average of the numbers if the greatest is 2"):}

Answer»

If column A is larger
If column B is larger
If the COLUMNS are EQUAL
If there is not ENOUGH information to decide

Answer :D
26579.

Value of lim _(hto0) (int _(0)^(x-he ^(-1//h))dx - int _(0)^(pi) x ^(2)e^(-x ^(2))dx )/(he^(-1//h)) in equal to:

Answer»

`PI (1-pi^(2)) E ^(-pi^(2))`
`2PI (1- pi^(2)) e ^(-pi^(2))`
`pi (1-pi)e ^(-pi)`
`pi ^(2) e ^(-pi ^(2))`

ANSWER :D
26580.

If overline(a), overline(b), overline(c) are non-collinear vectors such that for some scalars x, y, z, xoverline(a)+yoverline(b)+zoverline(c)=overline(0), then

Answer»

`x=0, yne0,zne0`
`XNE0, y=0, zne0`
`xne0, yne0, z=0`
`x=0, y=0, z=0`

ANSWER :D
26581.

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)log(1+cosx)dx

Answer»


ANSWER :`-pilog2`
26582.

If the tangent at the point (1,2) on the ellipse 3x^(2)+4y^(2)=19is also a tangent to the parabola y^(2)-kx=0 then k =

Answer»

`(57)/(16)`
`(-57)/(64)`
`(57)/(64)`
`(-57)/(16)`

ANSWER :D
26583.

number of ways in which 4 prizes can be distributed among 5 students If no student gets all the prizes is

Answer»

625
620
1024
1020

Answer :B
26584.

Let two independent eventsA and Bsuch that P(A)=0.3,P(B)=0.6.Find P(A and B)

Answer»

<P>

SOLUTION :GIVEN that P (A) = 0.3 and P(B) = 0.6therefore `P(A^c)`= 1-P(A) = 1-0.3=0.7
`P(B^c)` = 1-P(B) = 1-0.6=0.4
=P(A)P(B)
=`0.3xx0.6`=0.18
26585.

Solve ((1)/(2))^(logx^(2))+2gt3.2^(log(-x))

Answer»


Answer :`n in(-OO,-1)uu((-1)/(10),0)`
26586.

I : The coefficient of x^2 in (sqrtx^3 + 2//x)^6 is 60. II : The coefficient ofx^(-6) in (x^4 -1//x^2)^15 is -1365.

Answer»

only I is true
only II is true
both I and II are true
neither I nor II true

Answer :C
26587.

Find the equation of the circle passing through the origin, having its centre on the line x+y=4 and intersecting the circle x^2+y^2-4x+2y+4=0 orthogonally.

Answer»


ANSWER :`x^2+y^2-4x-4y=0`
26588.

The vertices of a triangle are A(1,0,0),B(0,2,0),C(0,0,3). If the direction ratios of the line joining the orthoceutre and circumcentre of the triangle are a, b, -111, the a+b is equal to

Answer»

5
10
15
25

Answer :C
26589.

Show that each of the followingexpressions is a soluton of the corresponding given differential equation (i) y=2x^(2),xy'=2y (ii) y=ae^(x)+be^(-x), y''-y=0

Answer»


ANSWER :(i) XY
(II) 0
26590.

Consider the functin f (x) = (ln x)/(8) - ax +x ^(2) and a ge 0 is a real constant :

Answer»


Answer :ATO Q; BtoS; C TOP; DtoR`
26591.

lim_( xto oo) ((x^2+5x+3)/(x^2+x+3))^x

Answer»

`E^4`
`e^2`
`e^3`
`e`

ANSWER :A
26592.

If bar(P),bar(Q),bar(R) and bar(S) are points whose position vectors are bar(i)-bar(k),-bar(i)+2bar(j),2bar(i)-3bar(k)and 3bar(i) - 2bar(j) - bar(k), then find component of bar(RS) on bar(PQ).

Answer»


ANSWER :`4//3`
26593.

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), thenAA n in {1,2,3...}:

Answer»

`T_(n ) GT 1/2 LN 2`
` S_(n) LT 1/2 ln 2`
` T_(n) lt 1/2 ln 2`
` S_(n)gt 1/2 ln 2`

Answer :A::B
26594.

x(x^(2) - 1)(dy)/(dx) = 1, y = 0 when x = 2.

Answer»


Answer :`y = 1/(2) log (X^(2) - 1)/(x^(2)) -(1)/(2) log(3)/(4)`
26595.

Let A = ((2.1,2.7,1.3),(3.1,3.2,1.7),(2.1,2.5,2.9)). The sum of values of x for which A - xI_(3) is singular is _______

Answer»


ANSWER :10.57
26596.

Let f(x) =x^(2) , x in (-1,2) Then show that f(x) has exactly one point of local minimabut global maximum Is not defined.

Answer»
26597.

C_0 - 2^3 . C_1 +3^2. C_2 - …. + (-1)^n (n+1)^2 . (C_n)=

Answer»

0
`2^n`
`(2^(n+1)-1)/(n+1)`
none

Answer :A
26598.

int_(0)^(pi//2) (sin 8x.log(cot x))/(cos 2 x)dx=

Answer»

0
1
`1//2`
`pi//2`

ANSWER :A
26599.

lim_(n rarr oo) ((2)/(3) + ((2)/(3))^(2) + ((2)/(3))^(3) + ……. + ((2)/(3))^(n)) is :

Answer»

1
2
`1//2`
NONE of these

ANSWER :B
26600.

How many roots foes the following equation possess 3 ^(|x|) (|2-x||)=2 ?

Answer»

2
3
4
6

Answer :C