Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26851.

Match the following. {:(I." If "(5x^(2)+2)/(x^(3)+x)=A/x+(Bx)/(x^(2)+1) " then "B=, "a) "2), (II." If "(4x)/(x^(2)-1)=A/(x-1)+B/(x+1) " then "A=, "b) "3), (III. " If "(3x+2)/(2-x-x^(2))=A/(2+x)+B/(1-x)" then "A=, "c) "-3//2), (IV." If "(2x+1)/((x-1)(x^(2)+1))=A/(x-1)+(Bx+C)/(x^(2)+1) " then "B=, "d) "-4//3):}

Answer»

c, d, a, b
b, a, d, c
c, a, b, d
c, b, a, d

Answer :B
26852.

Evaluate the following integrals int_1^2e^(4x+1)dx

Answer»

SOLUTION :`int_1^2e^(4x+1)DX=[E^(4x+1)/4]_1^2=(1/4){e^9-e^5}`
26853.

What is the maximum slope of the curve y=-x^(3)+3x^(2)+2x-27 ? Also find the point.

Answer»


ANSWER :`(1,-23), 5`
26854.

int (1)/(sqrt(sin^(2) x cos^(2) x - sin^(4) x))dx=

Answer»

`- cos^(-1)` (cot x ) + C
`- " COSH"^(-1)`(cot x ) + C
`"cosh"^(-1)` (cot x ) + C
`cos^(-1)`(cot x ) + C

Answer :B
26855.

What is the maximum value of the function sin x + cos x?

Answer»


ANSWER :. MAXIMUM VALUE = `SQRT(2)`
26856.

Let x_(1), x_(2) be the roots of x^(2)-3x +a=0 and x_(3), x_(4) be the roots of x^(2)-12x+b=0. If x_(1) lt x_(2) lt x_(3) lt x_(4) and x_(1), x_(2), x_(3) , x_(4) are in G.P., then ab equals

Answer»

`(24)/(5)`
64
16
8

Answer :B
26857.

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is 4r/3. Also, find maximum volume in terms of volume of the sphere.

Answer»


ANSWER :MAXIMUM volume of CONE `= (8)/(27)` times the volume of SPHERE
26858.

Evaluate(i) int(xe^(x))/((x+1)^(2))dx(ii) int x^3e^(-x) dx

Answer»
26859.

Show that * on R-{-1} defined by (a*b) =(a)/(b+1) is neither commutative nor associative

Answer»

Solution :(i)` 2*3=(2)/(3+1)=2/4=1/2and 3*2=(3)/(2+1)=3/3=1`
`therefore 2*3 NE 3*32` so * is not ocmmutative
(II) `(2*3)*1=1/2*1=(1//2)/(1+1)=1/4`
`(3*3)=(3)/(1+1)=3/2 `
`therefore 2*(3*1)=2*3/2=(2)/(3/2+1)=(2xx2/5)=4/5`
Thus (2*3)*1 ne 2*(3*1)
26860.

Expand :3sqrt(3) in ascending powers of (1)/(3)

Answer»


SOLUTION :N/A
26861.

Which of the followingstatement(s) is/are incorrect ?

Answer»

The lines`(x-4)/(-3)=(y+6)/(-1)=(z+6)/(-1) and (x-1)/(-1)=(y-2)/(-2)=(z-3)/(2)` are ORTHOGONAL
The planes`3x-2y-4z=3` and the PLANE `x-y-z=3` are orthogonal
The function `f(x)="In"(e^(-2)+e^(x))` is monotonic increasing`AA x in R`
If g is the INVERSE of the function, `f(x)="In"(e^(-2)+e^(x))" then " g(x)="In"(e^(x)-e^(-2))`

Answer :A::B
26862.

A die marked 1,2,3 in red and 4,5,6 in green is tossed. Let A be the event "the number is even" and B be the event."the number is red".Are A and B are independent?

Answer»

SOLUTION :S={1,2,3,4,5,6},A={2,4,6} and
B={1,2,3}THEREFORE `AnnB`={2}`rArr` P`(AnnB)`=1/6
P(A) =3/6=1/2 and P(B) =3/6=1/2therefore P(A) P(B)=1/2xx1/2=1/4`ne` P`(AnnB)` Thus,A and B are not independent.
26863.

Image of sphere x^(2)+y^(2)+z^(2)=9 in plane 2x+3y+4z-29=0 is

Answer»

`X^(2)+y^(2)+Z^(2)-8x-12y-16z+107=0`
`x^(2)+y^(2)+z^(2)+8x-12y-16z+107=0`
`x^(2)+y^(2)+z^(2)-8x+12y-16z+107=0`
`x^(2)+y^(2)+z^(2)-8x-12y+16z+107=0`

ANSWER :A
26864.

Find the values of the following integrals int(sinhx+(1)/(sqrt(x^(2)-1)))dx,|x|gt1

Answer»


ANSWER :`coshx+log|X+sqrt(x^(2)-1)|C`
26865.

Find the value of integral int_(0)^(t)int(|cos2x|+|sin2x|)dx,"where "npilttlt(npi+(pi)/(4)).

Answer»


ANSWER :`(2)/(PI)`
26866.

If planes ax+by+cz+d=0 and a'x+b'y+c'z+d'=0 are perpendicular, then

Answer»

`aa'+bb'+cc'+dd'=0`
`aa'+bb'+cc'=0`
`(a)/(a')=(B)/(b')=(C )/(c')`
`(a)/(a')+(b)/(b')+(c )/(c')=0`

ANSWER :B
26867.

If alpha=5vec(i) -3vec(k) and beta= 2vec(i)-vec(j)+2vec(k) , then find the value of alpha . beta

Answer»
26868.

If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2)y)/(dx^(2))=?

Answer»

A CONSTANT
A FUNCTION of X
A function of y
NONE of these

Answer :A
26869.

Let alpha != beta satisfy alpha^(2)+1=6alpha, beta^(2)+=6beta . Then, the quadraticequation whose roots are (alpha)/(alpha+1),(beta)/(beta+1) is

Answer»

`8X^(2)+8x+1=0`
`8x^(2)-8x-1=0`
`8x^(2)+8x+1=0`
`8x^(2)+8x-1=0`

ANSWER :C
26870.

Find the values of a and b such that the function defined by f(x)={{:(5," if "x le 2),(ax+b," if "2 lt x lt 10),(21," if "x ge 10):} is a continuous function.

Answer»

`a=3, b=1`
`a=1, b=1`
`a=1, b=2`
`a=2, b=1`

ANSWER :`D`
26871.

If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=a^(4) then the line touches the circle

Answer»

`x^(2)+y^(2)=2`
`x^(2)+y^(2)=1`
`x^(2)+y^(2)=3`
`x^(2)+y^(2)=4`

Answer :B
26872.

In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e^(0.5) = 1.648).

Answer»


ANSWER :RS 1648
26873.

Obtain the following integrals : int (x)/(x^(4)-1)dx

Answer»


ANSWER :`:. I=(1)/(4){log|x^(2)-1|-log|x^(2)+1|}+C`
26874.

Solve the differential equation (x dy - y dx) y sin ((y)/(x)) = (y dx + x dy) x cos ((y)/(x)).

Answer»


ANSWER :`SEC ((y)/(X)) = C XY`
26875.

Let 2 planes are being contained by the vectors alpha hati+3hatj-hatk, hati+(alpha-1)hatj+2hatk and 3hati+5hatj+2hatk. If the angle between these 2 planes is theta, then the value of cos^(2)theta is equal to

Answer»

`(15)/(17)`
`(289)/(717)`
`(289)/(2151)`
`(17)/(2151)`

ANSWER :C
26876.

A plano-convex lens (focal length f_2, refractive indexmu_(2), radius of curvature R) fits exactly into a plano-concave lens (focal lengthf_(1) refractive index mu_1, radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be :

Answer»

`f_(1)-f_(2)`
`(R)/(mu_(2)-mu_(1)`
`(2f_1f_(2))/(f_(1)-f_(2)`
`f_(1)+f_(2)`

SOLUTION :NA
26877.

Solvethe equation 15x^3- 23x^2+ 9x-1=0

Answer»


ANSWER :`1,1/3,1/5`
26878.

D, E and F are the mid points of the sides BC, CA and AB respectively of Delta ABC. 'O' is any point Match List-I to List-II. {:(,"List I",,"List II"),((I),"OA + OB + OC is equal to......",(a),OD + OE + OF),((II),"AD + BE + CF is equal to",(b),O),((III),OE + OF + "DO is",(c),OA),((IV),AD + (2)/(3)BE + (1)/(3)"CF equal",(d),(1)/(2)C):} The correct match is

Answer»

`I RARR a, II rarr B, III rarr c, IV rarr d`
`I rarr a, II rarr c, III rarr d, IV rarr d`
`I rarr c, II rarr d, III rarr a, IV rarr b`
`I rarr c, II rarr a, III rarr b, IV rarr d`

Answer :A
26879.

A die is thrown. If E is the event the number appearing is a multiple of 3' and F be theevent the number appearing is even then

Answer»

E and FARE mutally exclusive
E and F are dependent
E and F' are independent
None of these

SOLUTION :N/A
26880.

The total revenue in Rupees received from the sale of x units of a product is give by R(x)=13x^(2)+26x+15. Find the marginal revenue when x = 7.

Answer»


ANSWER :RS. 208
26881.

Find the vector equation of the plane vecr=hati-hatj+lambda(hati+hatj+hatk)+mu(hati-2hatj+3hatk) in scalar product form. Reduce it to normal form.

Answer»


ANSWER :`vecr.(5hati-2hatj-3hatk)=7`,
`vecr.((5)/(SQRT(38))HATI-(2)/(sqrt(38))HATJ-(3)/(sqrt(38))hatk)=(7)/(sqrt(38))`
26882.

The solution of x cos. (y)/(x) (y dx + x dy) = y sin.(y)/(x) (x dy - y dx) is

Answer»

`C xy Cos((2y)/(X)) = 1`
`c xy Cos((y)/(x)) = 1`
`xy Cos((y)/(x)) = c`
`c y Cos((y)/(x)) = 2X`

ANSWER :C
26883.

Lets have first derivative at c such that f'(c) = 0 and f'(c) gt 0, AA x in (c- delta c), also f'(c)gt 0, AA x in (c,c+delta), then c is a point of

Answer»

LOCAL maximum
Local minimum
Point of INFLECTION
ABSOLUTE maximum

Answer :C
26884.

Which of the following is the universal quantifier ?

Answer»

`in`
`SUB`
`AA`
`EE`

ANSWER :C
26885.

Let f(x) be a function which is differentiable any number of times and f(2x^(2)-1)=2x^(3)f(x), AA x in R. Then f^((2010))(0)= (Here f^((n))(x)=n^(th) order derivative of f at x)

Answer»

`-1`
1
0
data is insufficient

Solution :Replace x by `-x`
`therefore""f(2x^(2)-1)=-2x^(3)f(-x)`
`""2x^(3)f(x)=-2x^(3)f(-x)`
`RARR""f(-x)=-f(x)`
`therefore"f(x) or ODD function"`
`therefore""f^((n))(0)=0`, when n is EVEN
26886.

Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a if f(x) has points of extrema which are opposite in sign are

Answer»

`pi`
(-3,3)
`(-OO,(58)/(14))`
none of these

Solution :`f(X)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2`
f(X)=`3x^(2)-6(7-a)x-3(9-a^(2))`
for real root `Dge0`
or `49+a^(2)-14a+9-a^(2)ge0 or ale58/14`
when point of minma is negativepoint of maxima is also negative
Hence EQUATION f(x) =`3xA^(2)-6(7-a)x-3(9-a^(2))` =0 has both roots negative
sum or roots =`2(7-a)lta or a gt 7 ` which is not possible as form (1) `ale58/14`
When pointof maxima is POSITIVE point of minima is also positive ltrbgt Hence equation `f(x) =3x6(2)-6(7-a)x-3(9-a^(2))=0` has both roots positive
sum roots =`2(7-a)gt0 or alt7`
Also product of roots is positive or `-(9-a^(2))gt0 or a^(32)gt9 or a in (-oo,-3)cup(3,oo)`
From (1),(2) and (3) in `(-oo,-3)cup(3,58//14)`
For points of extrema of opposite sign equation (1) has roots of opposite sign
Thus `a in (-3,3).
26887.

The reflection of the point (alpha,beta,gamma) in the xy - plane is ..........

Answer»

`(ALPHA,BETA,0)`
`(0,0,GAMMA)`
`(-alpha,-beta,gamma)`
`(alpha,beta,-gamma)`

ANSWER :D
26888.

Iff(x) = x^(4) - 12x^(3) + 17x^(2) - 9x + 7then f(x + 3) =

Answer»

`x^(4) - 37X^(2) - 123x +110 `
`x^(4) - 25x^(2) - 73X -85 `
`x^(4) - 13x^(3) - 12x^(2) -15 `
`x^(4) - 47x^(2) - 125X +165 `

ANSWER :1
26889.

Consider the lines given by L_(1):x+3y-5=0 L_(2):3x-ky-1=0 L_(3):5x+2y-12=0 Match the following lists.

Answer»


SOLUTION :Given LINES are
`L_(1): x+3y-5 = 0`
`L_(2): 3x-ky-1 = 0`
`L_(3): 5x+2y-12 = 0`
`L_(1) " and " L_(3)` intersect at (2, 1)
`therefore L_(1), L_(2), L_(3)` are concurrent if
6-k-1 = 0 or k=5
`"For " L_(1), L_(2)` to be parallel
`(1)/(3) = (3)/(-k) RARR k = -9`
`"For " L_(2), L_(3)` to be parallel
`(3)/(5) = (-k)/(2) rArr k = (-6)/(5)`
Thus, for k = 5, lines are concurrent and for `k = -9, (-6)/(5),` at least two lines are parallelk. So, for these values of k, lines will not FORM triangle.
Obviously, for `k ne 5, -9, (-6)/(5),` lines form triangle.
26890.

Find the principal argument Arg z.

Answer»


ANSWER :`(7pi)/(12)`
26891.

Out of 20 consecutive integers two are drawn at random. Then find the probability that the sum is even.

Answer»


ANSWER :`(9)/(38)`
26892.

Equations of tangents to the hyperbola 4x^(2)-3y^(2)=24 which makes an angle 30^(@) with y-axis are

Answer»

`sqrt3x+y= pm SQRT10`
`sqrt3x-y= pm 10`
`sqrt3x-y= pm 5`
`sqrt3x-y= pm SQRT5`

ANSWER :A
26893.

Show that sqrt3" cosec "20^(@)-sec 20^(@)=4

Answer»

4
2
1
3

Answer :A
26894.

Which of the following is NOT true e?

Answer»

`{(PTOQ)^^(qtor)}to(ptor)` is a TAUTOLOGY
`(p^^~q)harr(ptoq)` is a tautology
`~(PHARRQ)-=(p^^~q)vv(~p^^q)`
`pto(q^^r)-=(ptoq)^^(ptor)`

ANSWER :C
26895.

If a + xb + yc = 0,a xx b + b xx c + c xx a = 6 (bxxc) then the locus of the point (x,y) is

Answer»

`x^(2) + y^(2) = 1`
`x + y - 5 = 0`
`2X + 6y = 5 `
`x + y + 6 = 0`

Answer :B
26896.

The probability of a shooter hitting a target is (3)/(4). How many minimum number of times must "he" // "she" fire so that the probability of hitting the target at least once is more than 0.99?

Answer»


ANSWER :4
26897.

Iff: NtoN, f(x)= 2x +3then …….

Answer»

fisnotone -one
F isonto
`f^(-1)(X)=(x-3)/(2)`
`f^(-1)`not defined

ANSWER :D
26898.

Differentiate w.r.t x f (x) sin 3xsin^(3)x

Answer»

SOLUTION :y = sin 3X ` sin ^(3) x`
` (dy)/(dx) = sin 3 x d/(dx) (sin^(3) x) + sin^(3) x d/(dx) (sin 3x)`
= (sin 3x) ( ` 3 sin^(2) x . Cos x) + sin^(3) (3 cos 3x)`
` 3 sin^(2) x (sin 3x cos x + cos 3x sin x) `
` 3 sin^(2) x sin 4X`
26899.

The locus represented by xy + yz = 0 is .........

Answer»

A PAIR of PERPENDICULAR LINES
A pair of parallel lines
A pair of parallel planes
A pair of perpendicular planes

Answer :D
26900.

If the two circles x^(2)+y^(2)+2gx+c=0 and x^(2)+y^(2)-2fy-c=0 have equal radius then locus of (g,f) is

Answer»

`x^(2)+y^(2)=c^(2)`
`x^(2)-y^(2)=2C`
`x-y^(2)=c^(2)`
`x^(2)+y^(2)=2c^(2)`

ANSWER :B