Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

27601.

Let A,B and C be three sets such that P(A) cap P(B) = P(C ), then

Answer»

`A CAP B sube C, A cap B ne C`
`C sube A cap B, A cap B ne C`
`A cap B = C`
`A cap B cap C = phi`

Answer :C
27602.

The probability that A hits a target is 1/4 and the probability that B hits the target is 1/3. If each of them fired once, what is the probability that the target will be hit atleast once.

Answer»


ANSWER :`(1)/(2)`
27603.

If [x] denotes the greatest integer function then the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+...+[1+sin nx], n in I^(+), x in (0,pi) are

Answer»

(N-1)
n
(n+1)
(n+2)

ANSWER :B::C
27604.

If f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x+b, x+c, 0)|, then

Answer»

`F(a)=0`
`f(B)=0`
`f(0)=0`
`f(1)=0`

SOLUTION :N/A
27605.

A variable plane moves so that the sum of the reciprocals of its intercepts on the coordinate axes is (1//2). Then, the plane passes through the point

Answer»

`((1)/(2),(1)/(2),-(1)/(2))`
`(-1,1,1)`
(2,2,2)
(0,0,0)

ANSWER :C
27606.

4 boys and 4 girls are arranged in a row at random. Find the probability that the boys and girls sit alternatively.

Answer»


ANSWER :`(2 |ul(4) XX |ul(4))/(|ul(8))`
27607.

Let S={(x,y),x^(2)+y^(2)-6x-8y+21le0} then "max"{(12x)/7-(5y)/7,(x,y)inS}+"min" {1/2(x^(2)+y^(2)+1)+(x-y),(x-y)inS} -"min"{(sqrt(3)y+|x-3|)/(|x-3|),(x,y)inS}

Answer»


SOLUTION :`[6]`
`6+4-4`
27608.

If f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqrt(x(1-x))) where x in (0, (1)/(2)) then f'(x) has the value equal to

Answer»

`(2)/(SQRT(x(1-x)))`
Zero
`-(2)/(sqrt(x(1-x)))`
`PI`

Solution :`F(x)` simplifies to `pi`
`rArr""f'(x)=0`
or `""`directly DIFFERENTIALE `f(x)` to GET zone
27609.

If [overset(-)a xx overset(-)b xx overset(-)c overset(-)c xx overset(-)a]=lambda [overset(-)a overset(-)b overset(-)c]," then "lambda=

Answer»

0
1
2
3

Answer :B
27610.

If the minimum value of f(x)=2x^(2)+alphax+8 is the same as the maximum value of g(x)=-3x^(2)-4x+alpha^(2) then alpha^(2)=

Answer»

`(150)/(27)`
`(160)/(27)`
`(170)/(27)`
`(181)/(27)`

Answer :B
27611.

Lothar has 6 stamps from utopia and 4 stamps from cornucopia in his collection. He will give two stamps of each type to his friend peggy sue. {:("Quantity A","Quantity B"),("The number of ways Lother",100),("can giv 4 stamps (two of each type) to Peddy Sue",):}

Answer»


ANSWER :QUANTITY A is GREATER.
27612.

Write the component statement "the school is closed if there is a holiday or a Sunday" compound statements and check whether the compound statement is true or false.

Answer»

Solution :The component STATEMENTS are
p: There is a holiday or a SUNDAY
Q : The School is closed
The truth VALUE of the COMPOUND statement is .True..
27613.

Match the following

Answer»


ANSWER :A::B::C::D
27614.

The rate of increase in the number of bacteria in a certain becteria cultureis propotional to the number present at that time. If initiallly there are300 bacteria and after 2 hours, the bacteria polulation is increased by 20% then after 24 houre, the number of bacteria are (log 1.2=0.18232,e^(2.18784)=8.9166)

Answer»

2675
2674
3210
3209

Answer :A
27615.

Let x=(a+2b)/(a+b) and y=(a)/(b), where a and b are positive integers. If y^(2) gt 2, then

Answer»

`x^(2) le 2`
`x^(2) LT 2`
`x^(2) GT 2`
`x^(2) ge 2`

Answer :B
27616.

int ( x cos x dx)/( sin^(3) x)

Answer»


Answer :`-0.5 ((x)/( sin^(2) x) + COT x) + C`.
27617.

(i) Verify by method of contradicition p : There are infinitely many numbers (ii) Verify by method of contradicition p : If p and q are rational number q ne 0 and r is an irrational number, then p+qr is irrational

Answer»

Solution :(i) Let us assume that there are only FINITELY many primes ,`p_1,p_2,……….p_n`
Now contructing a number
`p=p_1xxp_2xxp_3xx….xxp_(n+1)`
CLEARLY , p is larger than all primes. So it is not divisble by any existing prime . So, according to defination of prime number p is true . So our ASSUMPTION is wrong
So, given statement is true
(ii) Let us assume that
p+qr is irrational
so, qr is irrational
so, `(qr)/q=r` is RATIONAL , which contradicts
so, p is true
27618.

Find the distance between the lines overset(to)(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda ( 2 hat(i) + 3 hat(j) + 6 hat(j) ) & overset(to)(r ) = 3 hat(i) + 3 hat(j) - 5 hat(k) + mu ( -2 hat(i) + 3 hat(j) + 8 hat(k) )

Answer»


ANSWER :`d= ( SQRT( 293))/( 7) `
27619.

If A=[{:(3,1),(-1,2):}] show that A^2-5A+7I=O. HencefindA^(-1)

Answer»


ANSWER :`thereforeA^(-1)=1/7[{:(2,-1),(1,3):}]`
27620.

Find all 7 digit numbers formed by using only the digits 5 and 7 and divisible by both 5 and 7.

Answer»


ANSWER :`7775775, 7757575, 5577775, 7575575, 5777755, 7755755, 5755575, 5557755, 7555555`
27621.

Examine the continuity of the following functions at indicated points.f(x)={((sin2x)/x if xne0 at x=0),(2 if x=0):}

Answer»

Solution :`lim_(xto0)f(x)=lim_(xto0)(sin2x)/x`
`lim_(xto0)2 cdot (sin2x)/(2X)=2 cdot lim_(2xto0)(sin2x)/(2x)=2 cdot 1`
`=2(becauselim_(theta=0)(sintheta)/theta=1)`
Again `f(0)=2implieslim_(xto0)f(x)=f(0)`
`THEREFORE` The function f(x) is CONTINUOUS at x=0
27622.

If a line has the direction ratios –18, 12, – 4, then what are its direction cosines ?

Answer»


Answer :HENCE, the direction COSINES of a LINE are `(-9)/(11),(6)/(11),(-2)/(11)`.
27623.

Lengths of common tangents of the circles x^(2)+y^(2)=6x,x^(2)+y^(2)+2x=0 are

Answer»

`(SQRT(3))`
`sqrt(3),3sqrt(3)`
`2sqrt(3)`
`2sqrt(3),3sqrt(3)`

ANSWER :C
27624.

What is the total number of ways of selecting atleast one item from each of the two sets containing 6 identical items each?

Answer»


ANSWER :36
27625.

If ((1+costheta+isintheta)/(sintheta+i+icostheta))^(4)=cosntheta+isinntheta then n=

Answer»

4
8
6
2

Answer :A
27626.

Let a = sin^2 x hati + cos^2 x hatj + hatk ,( x in R). If the pairs of vectors a , hati , a , hatj and a , hatk are adjacent sides of 3 distinct parallelograms and A is the sum of the squares of areas these parallelograms ,then A lies in the interval

Answer»

`(0 , 1)`
`(3, 4)`
`(0 , 2)`
`(1, 2)`

Answer :B
27627.

Solve 5x-3 lt 7, when x is an integer.

Answer»


ANSWER :The SOLUTION SET is {……….-3,-2,-1, 0,1}
27628.

If A=[{:(alpha,beta),(gamma,-alpha):}] is such that A^(2)=I, then ……

Answer»

`1+alpha^(2)+betagamma=0`
`1-alpha^(2)+betagamma=0`
`1-alpha^(2)-betagamma=0`
`1+alpha^(2)-betagamma=0`

ANSWER :C
27629.

The solution of sec x(dy)/(dx) = y + sin x is

Answer»

`y e^(-SIN X) = e^(-sin x)(-sinx-1)+C`
`y e^(-sin x) = e^(sin x)(sinx+1)+c`
`y e^(COS x) = e^(cosx)(sin x+1)+c`
`y e^(-sin x) = e^(-sin x)(sinx+1)+c`

Answer :A
27630.

What is (sintheta+1)/(costheta)equal to ?

Answer»

`(sintheta+costheta-1)/(sintheta+costheta+1)`
`(sintheta+costheta+1)/(sintheta+costheta-1)`
`(sintheta-costheta-1)/(sintheta+costheta+1)`
`(sintheta-costheta+1)/(sintheta+costheta-1)`

Solution :CONSIDER`(1+sintheta)/(costheta)=(1+sintheta)/(costheta)=(1+(2"tan"(theta)/(2))/(1+"tan"^(2)(theta)/(2)))/((1-"tan"^(2)(theta)/(2))/(1+"tan"^(2)(theta)/(2)))`
`(becausesin2theta=(2tantheta)/(1+tan^(2)theta)andcos2 theta=(1-tan^(2)theta)/(1+tan^(2)theta))`
`=((1+"tan"(theta)/(2))^(2))/((1+"tan"(theta)/(2))(1+"tan"(theta)/(2)))`
`=(1+"tan"(theta)/(2)"cos"(theta)/(2)+2"sin"^(2)(theta)/(2))/(2"sin"(theta)/(2) "cos "(theta)/(2)-2" sin"^(2)(theta)/(2))`
`=(sintheta+1-costheta)/(sintheta-1+costheta)`
`(becausesin2 theta=2sinthetacosthetaand COS2 theta=1-2sin^(2)theta)`
27631.

The set of values of x for which the inequalitiesx^(2)-3x-10 lt 0, 10x-x^(2)-16 gt 0 hold simultaneously, is

Answer»

(-2, 5)
(2, 8)
(-2, 8)
(2, 5)

ANSWER :D
27632.

If the axes are rotated anticlockwise through an angle 90^@ then the equation x^2=4ay is changed to the equation

Answer»

`y^2=4ax`
`x^2=-4ay`
`y^2=4ax`
`x^2=4ay`

ANSWER :A
27633.

If x = tan^(-1) 1 -cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 cos^(-1) (1/8)), then

Answer»

` X = PI y`
` y = pi x`
` TAN x = - (4//3) y`
` tan x = ( 4//3) y`

ANSWER :C
27634.

The mod-amplitude form of -sqrt3 - i

Answer»

2 cis `"" (-5PI)/(6)`
2 cis `"" (PI)/(6)`
cis `"" (5pi)/(6)`
cis `"" (pi)/(6)`

ANSWER :A
27635.

Find the number of integer solutions of [x/100[x/100]]=5 (Here [x] der Here [x] denotes the greatest integer less than or equal to x. (For example (3.4) = 3 and (-2.3) = -3).

Answer»


ANSWER :50
27636.

tan^-1(frac{1}{sqrt3}) - sin^-1(frac{1}{2}) is equal to :

Answer»

`π/4`
`π/3`
`-π/4`
`-π/3`

ANSWER :C
27637.

A plane meets the co-ordinate axes at A, B and C such that the centroid of the traingleABC is (3, 4, -6). Find the equation of the plane.

Answer»


ANSWER :`4x+3y-2z=36`
27638.

Out of 21 tickets numbered 10, 11, 12,…, 30, three tickets are drawn at random. Find the probability that the numbers on these tickets are in A.P.

Answer»


ANSWER :`(10)/(133)`
27639.

Find the area of the region enclosed by the parabola x^(2) = y, the line y = x + 2 and the x-axis.

Answer»


ANSWER :`5/6`
27640.

int (log x) ^(3) x ^(4) dx, where rho = log x

Answer»

`(x ^(5))/(625) [125rho ^(3) -75p^(2) + 30 p -6]+c`
` (x ^(5))/(625) [125 p ^(3) - 25 p ^(2) + 30 rho -5]+c `
`(x ^(5))/(625) [125 p ^(3) - 60 p ^(2) -25P +5] +c`
`(x ^(5))/(125) [625 p^(3) -75 p ^(2) + 30p+6] +c`

Answer :A
27641.

The value of lambda, for which the four points 2hati+3hatj-hatk, hati+3hatk, 2hati+4hatj-2hatk, hati-6hatj+lambda hatk are coplanar, is

Answer»

2
4
6
8

Solution :Let `A=2hat(i)+3HAT(j)-hat(k), B =hat(i)-2hat(j)+3hat(k)`,
`C=3hat(i)+4hat(j)-2hat(k)` and `D=hat(i)-6hat(j)+lambda hat(k)`
Now, `AB=-hat(i)-5hat(j)+4hat(k), AC =hat(i)+hat(j)-hat(k)`
and `AD=-hat(i)-9hat(j)+(lambda+1)hat(k)`
These will be coplanar, if `[(AB,AC,AD)]=0`
`:. |(-1,-5,4),(1,1,-1),(-1,-9,(lambda+1))|=0`
`implies -1(lambda+1-9)+5(lambda+1-1)+4(-9+1)=0`
`implies 4lambda -24 =0`
`implies lambda =6`
27642.

Evalute the following integrals int (x^(3))/( sqrt( x + 1)) dx

Answer»


ANSWER :`2[((x+1)^(7//2))/(7)-(3(x+1)^(5//2))/(5)+(x+1)^(3//2)-SQRT(x+1)]+C`
27643.

Find all the points of discontinuity of f defined by f(x)= |x|-|x+1|.

Answer»


ANSWER :There is no POINT of DISCONTINUITY.
27644.

The the area bounded by the curve |x| + |y| = c (c > 0) is 2c^(2), then the area bounded by |ax + by| + |bx - ay| = c where a^(2) + b^(2)= 1 is

Answer»

`8C^(2)`
`4c^(2)`
`2c^(2)`
`C^(2)`

ANSWER :C
27645.

Integrate the following : intx^5dx

Answer»

SOLUTION :`intx^5dx`=`x^6/6+C`
27646.

Let A=[[1,2,3,4,1], [4,5,6,1,2], [3,9,1,1,6]]Write down the entries a_31,a_25,a_23 ?

Answer»

SOLUTION :`a_31=3,a_25=2,a_23=6`
27647.

Integrate the functions (x^(2)+x+1)/((x+1)^(2)(x+2))

Answer»


ANSWER :`-2logabs(x+1)-1/(x+1)+3logabs(x+2)+C`
27648.

Find which of the operations given above has identity. a"*"b=(a-b)^2

Answer»


SOLUTION :N/A
27649.

Coordinates of the point O, P, Q and R are respectively (0,0,4),(4,6,2m),(2,0,2n) and (2,4,6). Let L,M,N and K be points on the sides OR, OP, PQ and QR respectively such that LMNK is a parallelogram whose two adjecent sides LM and side LK are each of length sqrt2. What are the values of m and n respectively ?

Answer»

6,2
1,3
3,1
None of the above

SOLUTION :GO through the OPTION ( C)
27650.

If four squares are chosen at random on a chess board, then the probability that they lie in a diagonal line is

Answer»

`17//744`
`31//744`
`7//744`
`1//744`

ANSWER :C