Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

27701.

Solve : 2x^3-3x^2-14x+5=0 given that 2-3i is a root

Answer»


ANSWER :`2+3i,2-3i,(-1)/2`
27702.

Ifalpha , beta , gammaare therootsoftheequationx^3 +px^2 + qx +r=0then thecoefficientof x incubicequation whoserootsarealpha( beta+ gamma ), beta( gamma+ alpha)andgamma ( alpha+ beta) is

Answer»

2q
`Q^(2) + PR`
`p^(2) - qr`
`r(pq - r)`

ANSWER :2
27703.

If A and B are two events such that P(A) ne 0 and P(B) ne 0, then P(A' | B')= ……….

Answer»

<P>`1- P(A|B)`
`1- P(A'|B)`
`(1- P(A CUP B))/(P(B'))`
`(P(A'))/(P(B'))`

Answer :C
27704.

If (a_(1),1,1),(1,a_(2),1) and (1,1,a_(3)) are coplaner (where a_(i)ge1,i=1,2,3) then underset(i=1)overset(3)sum(1)/(1-a_(i)) = …………..

Answer»

0
`-1`
1
`3-underset(i=1)OVERSET(3)SUM a_(i)`

Answer :C
27705.

Evaluate int (1)/(x l (x ) l^(2) (x ) ....l^(n) (x)) dx where l^(n) (x) = log_(e) log_(e) ....... Log_(e)(x ) (n times)

Answer»


ANSWER :`L^((n+1)) ` (X) + C
27706.

If int(x+5)/(x^(2) + 4x+5)dx = a log(x^(2) + 4x+5) + b tan^(-1)(x+k) + constant then (a,b,c)=

Answer»

`(1/2, 3,2)`
`(1/2,1,2)`
`(1/2,3,1)`
(1,3,2)

ANSWER :A
27707.

Let V denote the root mean square speed of the molecules in an ideal diatomic gas at absolute temperature T. The mass of a molecule is m. Neglecting vibrational energy terms, which is True?

Answer»

a MOLECULE can have a speed greater than `sqrt(2)v`
v is proportional to `sqrt(T) `
the average ROTATIONAL kinetic energy of a molecule is `(mv^(2))/(4)`
the average kinetic energy of a molecule is `(5mv^(2))/(6)`

Solution :AVG.`K.E.=(5)/(2)KT=(5)/(6)mv^(2)""[:.(1)/(2)mv^(2)=(3)/(2)KT]`
27708.

If H_(1), H_(2) are two harmonic means between two positive numbers a and b, (a != b), A and G are the arithmetic and geometric means between a and b, then (H_(2) + H_(1))/(H_(2) H_(1)) is

Answer»

`A/G`
`(2A)/G`
`A/(2G^(2))`
`(2A)/G^(2)`

ANSWER :D
27709.

The value of (b times c)*(a times d)+(c times a)*(b times d)+(a times b)*(c times d) is

Answer»

[a, B, C] - [b, c, d]
[a, b, c] + [b, c, d]
0
none of these

Answer :C
27710.

Let f(x)=((e^(xln(2^(x)-1)-(2^(x)-1)^(x)sinx))/(e^(xlnx)))^(1//x). Then right hand limit of f(x) at x = 0

Answer»

is EQUAL to ln 2
is equal to `(ln2)/€`
is equal to `e(ln2)`
does not exist

Answer :B
27711.

Area lying in the first quadrant and bounded by the circle x^(2) + y^(2) = 4 and the lines x = 0 and x = 2 is

Answer»

`PI`
`pi/2`
`pi/3`
`pi/4`

ANSWER :A
27712.

The product of the lengths of the perpendiculars drawn from the point (-1,5) to the pair of lines 2x^(2) - xy - 3y^(2) + 6x + y + 4 = 0 is

Answer»

`(68)/(SQRT2)`
`(68)/(sqrt26)`
`(65)/(sqrt2)`
`(65)/(sqrt26)`

ANSWER :D
27713.

If f:R to R is defined by f(x) = {(x-1, ",","for"x le 1),(2-x^(2), ",", "for"1 lt x le 3 ),(x-10, ",", "for"3 lt x lt 5 ),(2x, ",", "for"x ge 5 ):} then the set of points of discontinuity of f is

Answer»

`R -{1,3,5}`
`{1,3,5}`
`R -{1,5}`
`{1/5}`

ANSWER :D
27714.

x^(x^(2)-3)+(x-3)^(x^2)," for "x gt 3.

Answer»


ANSWER :`X^(x^2-3)[(x^2-3)/(x)+2xlogx]+(x-3)^(x^2)[(x^2)/(x-3)+2X LOG(x-3)]`
27715.

If x,y, z and w are non-zero real numbers andx^(2) + 5y^(2) + 5z^2+4w^(2) - 4xy - 4yz - 4zw = 0, then x, y, z,w are in

Answer»

A.P.
A.G.P
H.P.
G.P.

Answer :4
27716.

Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

Answer»


ANSWER :8,8
27717.

A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs. 250 per bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs. 200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag ?

Answer»


Answer :Minimum COST is Rs. 1950.
The number of BAGS of cattle feed of brand P = 3
The number of bags of cattle FEE of brand Q = 6
27718.

If theta is the angle between any two vectors vecaandvecb, then |veca*vecb|=|vecaxxvecb| when thetais equal to

Answer»

0
`(pi)/(4)`
`(pi)/(2)`
`pi`

ANSWER :B
27719.

Write the value x for which d/dxsin(sin^-1x)=1

Answer»

SOLUTION :`d/dxsin(sin^-1x)=1` for `X in (-1,1)`
27720.

A die is thrown 6 times If 'getting an odd number' is a success, what is the probability of i. 5 successes?ii. atleast 5, successes?iii. atmost 5 successes?

Answer»


ANSWER :(i) `(3)/(32)` (ii) `(7)/(64)` (III) `(63)/(64)`
27721.

The value of int_(0)^(pi//2) sin^(4)x cos^(6)x dx, is

Answer»

`(3pi)/(216)`
`(3pi)/(512)`
`(pi)/(512)`
none of these

Solution :Using Gamma Function, we have
`underset(0)overset(pi//2)int sin^(4)x cos^(6)x dx=(Gamma(5//2)Gamma(7//2))/(2Gamma(4+6+2)/(2))=(Gamma(5//2)Gamma(7//2))/(2Gamma6)`
`rArr `underset(0)overset(pi//2)int sin^(4)x cos^(6)x dx=(((3)/(2)XX(1)/(2)xxGamma(1)/(2))((5)/(2)xx(3)/(2)xx(1)/(2)xxGamma(1)/(2)))/(2xx5!)=(3pi)/(512)`
27722.

AB and CD are chords of the circle, and E and F are the midpoints of the chords, respectively. The line EF passes through the center O of the circle. IF EF = 17. then what is radius of the circle?

Answer»

10
12
13
15

Answer :C
27723.

Consider f: R to R given by f (x) = 4x = 4x + 3.Show that f is invertible. Find the inverse of f.

Answer»


ANSWER :`F ^(-1) ` is given by `f ^(-1) (y ) = (y -3)/(4)`
27724.

If the circles of same radius 'a' and centres at (2, 3) and (5, 6) cut orthogonally, then a =

Answer»

3
4
6
10

Answer :B
27725.

If the equation ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 represents a pair of straight lines , then the square of the distance of their point of intersection from the origin is

Answer»

`(C (a + b) - af^(2) - bg^(2))/(AB - H^(2))`
`(c (a+ b) + f^(2) + g^(2))/( ab - h^(2))`
`( c (a + b) - f^(2) - g^(2))/(ab - h^(2))`
`(c (a + b) - f^(2) - g^(2))/((ab - h^(2))^(2))`

Answer :C
27726.

How many integers are there from 17 to 765, inclusive?

Answer»


ANSWER :752
27727.

Iftanalpha = b/a, a gt b gt 0 andif0 ltalpha lt (pi)/(4), thensqrt((a+b)/(a-b))- sqrt((a-b)/(a+b)) isequalto

Answer»

`(2 SIN alpha)/( sqrt(cos2 alpha ))`
`(2 cosalpha)/( sqrt(cos 2 alpha))`
`(2 sin alpha)/( sqrt(sin 2 alpha))`
`(2 cosalpha)/( sqrt( sin 2 alpha))`

ANSWER :A
27728.

If int (x^(2) tan^(-1) x)/(1 + x^(2))dx = xtan^(-1) x - (1)/(2) "log " (1 + x^(2)) + f(x) + cthen f(x) =

Answer»

`- (TAN^(-1)x)/(2)`
`- (1)/(2) (tan^(-1) x)^(2)`
`(tan^(-1)x)/(2)`
`((tan^(-1)x)^(2))/(2) `

Answer :B
27729.

Whch of the following is correct?

Answer»

`COS 1^(@) gt cos1^(@)`
`cos 1^(@) lt cos1^(@)`
`cos1^(@)=sin 1^(@)`
`SIN1^(@) = 1/(180^(@)) sin1^(@)`

ANSWER :A
27730.

Solve the equationx^4 +x^3 -25 x^2 +41x+ 66=0giventhat3 + I sqrt(2)is a root

Answer»


ANSWER :`-6 ,-1,3 +- I SQRT(2)`
27731.

Differentiate w.r.t.x the function. (logx)^(log x), x gt 1.

Answer»


Answer :`(LOGX)^(LOG x)[(1)/(x)+(log(log x))/(x)], x gt 1`
27732.

lim_(xto0)(sqrt(x^(2)+100)-10)/(x^(2))=

Answer»

0
`0.1`
`0.05`
`-0.05`

ANSWER :C
27733.

If lim_(xtoa) {(f(x))/(g(x))} exists, then

Answer»

0
2
4
`oo`

Solution :If `F(x)=SIN((1)/(x))" and "g(x)=(1)/(x)," then both "underset(xto0)limf(x)" and "underset(xto0)limg(x)" do nto EXIST, but "underset(xto0)LIM(f(x))/(g(x))=0" EXISTS"`
27734.

If vec(a), vec(b)" and "vec(c) are three unit vectors such that vec(a)+vec(b)+vec(c)=vec(O), find the value of vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a).

Answer»


ANSWER :`-3//2`
27735.

Solve: x^2dy+(xy+y^2)dx=0, given x=1 and y = 1.

Answer»


ANSWER :`y + 2X = 3X^(2) y`
27736.

The orthocentre of the triangle formed by (2, -1//2), (1//2, -1//2) and (2, (sqrt(3)-1)//2) is

Answer»

`((3)/(2), (SQRT(3)-3)/(6))`
`(2, -(1)/(2))`
`((5)/(4), (sqrt(3)-2)/(4))`
`((1)/(2), -(1)/(2))`

ANSWER :B
27737.

Evalute the following integrals int (sin^(3//2) x + cos^(3//2)x)/(sqrt(sin^(3) x.cos^(3) x.sin(x + theta))) dx

Answer»


Answer :`(2)/( COS THETA) SQRT(cos theta TAN x + sin theta ) + c `
27738.

Ifthe sumofthedistancesofa pointPfrom two perpendicular linesina planesis1,thenthelocusofP isa

Answer»

RHOMBUS
circle
straightline
pairofstraightlines

ANSWER :A
27739.

If 5x -2y + k =0 is a tangent to the parabola y^(2) = 6x, then their point of contact is

Answer»

`((6)/(5), (6)/(5))`
`((6)/(5), (6)/(25))`
`((6)/(25), (6)/(5))`
`((6)/(25), (6)/(25))`

ANSWER :C
27740.

Match the following {:(I.,(1-i)(1+2i)(1-3i)=,"a)"6-8i),(II.,(1-i)^6+(1-i)^3=,"b)"-2i),(III.,((1+i)/(1-i))^3-((1+i)/(1+i))^3=,"c)"-2-10i),(IV.,sqrt(-5+12i)=,"d)"2+3i):}

Answer»

a,c,B,d
b,d,c,a
d,b,a,c
c,a,b,d

Answer :A
27741.

Letz_1, z_2 , z_3in Csuchthat|z_1 |= |z_2| =|z_3| =|z_1+z_2+ z _3|=4 . If|z_1 - z _2 |= | z _1+z _ 3 |andz_2nez_3, thenvaluesof|z_1+z_2 |* |z_1+z _ 3|is_____.

Answer»


Solution :Since , `|z_(1)| = |z_(2)| = |z_(3)| = 4`, oringin is circumcentre of triangleformed by `A(z_(1)),B(z_(2)) and C(z_(3))` .

So,orhtocentre of trinagle is `z_(1)+z_(2)+z_(3)|=4`
Given that `|z_(1)-z_(2)|=|z_(1)-z_(3)|`
`rArr AB = AC `
`therefore angle BAC = 90^(@)` (orthocentre is at vertex A)
Thus, `|z_(1)+z_(2)|.|z_(1)+z_(3)| = |z_(4) -z_(3)||z_(4)-z_(2)| `
`= (AC)(AB)= (4sqrt(2))(4sqrt(2)) = 32`
27742.

Let a, b, c in R, agt0, and the function f: R to R be defined by f(x)=ax^(2)+bx+c. Statement -1 b^(2)lt4ac rArr f(s) gt 0 for evergy value of x. Statement - 2 : f is strictly decreasing in the interval (-oo,-b//2a) and strictly increasing in the interval (-b//2a,oo).

Answer»


ANSWER :A
27743.

If 0 lt alpha lt pi/2 is a fixed andgle .If P=(cos theta sin theta) and Q ={cos (alpha- theta),sin (alpha - theta) then Q is obtained from P by

Answer»

<P>coleckwise rotaion around ORIGIN through an angle `alpha`
anti -clockwise rotation around origin through an angle `alpha`
reflection in the line through
reflection in the line trough originwith slope tan `alpha/2`

Solution :In the ARGAND plane P is represented by `E^(i0)` and Q is represented by `e^i(alpha - theta)`
Now rotation about a line with angle `alpha` is given by `e^(theta) rarr e^(alpha- theta)`.ThereforeQ is obtained fromP by reflection in the line MAKING an anlgle `alpha //2`
27744.

The production of item A is x and the production of item B is y. If the corner points of the bounded feasible region are (1, 0), (2, 0), (0, 2) and (0, 1) then the maximum profit z = 2000x + 5000y is ……..

Answer»

20000
5000
4000
10000

Answer :D
27745.

The maximum value of f(x)=5cos x + 12 sin x is ………..

Answer»

13
12
5
17

Answer :A
27746.

Evaluate the following integrals (iii) int_(-1)^(1)|x|dx

Answer»


ANSWER :1
27747.

(-veca).vecbxx(-vecc)) =

Answer»

`vecaxxvecb.vecc`
`-VECA.(VECBXXVECC)`
`vecaxxvecc.vecb`
`veca.(veccxxvecb)`

ANSWER :B
27748.

Evaluate the following inegrals intsqrt(x^(2) + 4)dx

Answer»


ANSWER :`(X)/(2)sqrt(x^(2)+4)+2sinh^(-1)((x)/(2))+C`
27749.

Estimate the value of int_(0)^(0.5) x^(2)dx using the Riemann sums corresponding to 5 subintervals of equals witdh and applying (i) left-end rule (ii) right-end rule (iii) the mid-point rule.

Answer»


ANSWER :`int_(0)^(0.5)X^(2)` DX is approximately 0.04125
27750.

For a parabolay^(2)-2y-4x+9=0, the tangent at some point B is 3y = x + 10, where the normal at some other point K is 27y - 9x + 10 = 0. Letalpha, betaare the segments of the chord BK cut by the axes of the parabola. Find the number of integral values of 'a' for which the equation3x^(2)-(alpha+beta)x+(a^(2)-5a-(353)/(27))alphabeta=0has its roots real and distinct.

Answer»


Solution :Clearly BK is a FOCAL chord so `alpha+beta+alphabeta RARR alpha beta=(100)/(9)`
For real and distinct roots `D gt 0`
`rArr""a^(2)gt 5a gt 14 lt0""rArr""gt 2 LT 7`
NUMBER of intergral values of a are 8.