Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

27801.

Find the maximum number of points into which 4 circles and 4 straight lines intersect

Answer»


ANSWER :50
27802.

int_1^2xlogxdx

Answer»

Solution :`int_1^2xlogxdx` [CHOOSE logx =IST x=2nd function]
[logx CDOT (x^2/2)]_1^2-int_1^2(1/x) cdot(x^2/2) dx`
2log2 -1/4(4-1) =2log2-(3/4)
27803.

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Answer»


Solution :We have
`a+b+c = 2^(30)`
Now, `a^(3) + b^(3) + c^(3) - c^(3) - 3abc`
`= (a+b+c) (a+BOMEGA + comega^(2)) (a +bomega^(2) + comega)`
`= 2^(20) (1+omega)^(20) (1+omega^(2))^(20)`
`= 2^(20)`
27804.

Find the value of k so that the lines (1-x)/(3) = (y-2)/(2k) = (z-3)/(2) and (1+x)/(3k) = (y-1)/(1) = (6-z)/(7) are perpendicular to each other.

Answer»


ANSWER :K = -2
27805.

If (sqrt(3)-i)^(50)= 2^(48)(x-iy), then x^(2)+y^(2) is equal to

Answer»

`2`
`4`
`8`
`16`

ANSWER :D
27806.

. Which of the following is the CORRECT combination ?

Answer»

<P>(III) (II) (S)
(IV) (i) ( R)
(I) (ii) (P)
(II) (ii) (Q)

Answer :A
27807.

int (1)/((2x+1)^((5)/(6))(3x+5)^((7)/(6)))dx=

Answer»

`(6)/(7)((2x+1)/(3x+5))^(6)+C`
`(6)/(7)((3x+5)/(2x+1))^((1)/(6))+c`
`-(6)/(7)((2x+1)/(3x+5))^((1)/(6))+c`
`-(6)/(7)((3x+5)/(3x+1))^((1)/(6))+c`

ANSWER :1
27808.

Locus of mid point of AB is

Answer»

`X^(2) = - 2y `
`2X^(2) = - y`
`x^(2) = - 4Y`
`x^(2)/2 - y^(2)/1 = - 1`

SOLUTION :N/A
27809.

. Which of the following is the CORRECT combination ?

Answer»

<P>(I) (III) (P)
(IV) (ii) (P)
(II) (iii) (Q)
(III) (i) (S )

ANSWER :C
27810.

A fair die is rolled. Consider events E = {1,3,5}, F = {2,3} and G = {2,3,4,5} Find (i) P(E|F) and P(F|E) (ii) P(E|G) and P(G|E) (iii) P((E cup F)|G) and P((E cap F)|G)

Answer»


ANSWER :`(3)/(4)` and `(1)/(4)`
27811.

. Which of the following is the CORRECT combination ?

Answer»

(II) (i) (S)
(L) (i) (R )
(IV) (iii) ( P)
(III) (ii) (Q)

Answer :B
27812.

Find the maximum value of 2x^(3)-24x+107 in the interval [1, 3]. Find the maximum value of the same function in [-3,-1].

Answer»


ANSWER :89, 139
27813.

Ifa ne bthen theexpressionx^2- (a +b)x+ ( a^2- ab +b^2 )___negativevaluesforanyrealvalueofx

Answer»

does not TAKE
take
none
cannotbe determined

Answer :A
27814.

If x=2at, y=4/t." Find "(dy)/(dx)

Answer»


ANSWER :`(DY)/(DX)=(-2)/(at^(2))`
27815.

A : If x+y =12 then the minimum value of x^2+y^2 is 72 R : If x+y=k then the maximum value of xy is k^2

Answer»

Both A and R are true and R is correct explanation of A
Both A and R are true but R is not correct explanation of A
A is true R is FALSE
A is false but R is true

Answer :A
27816.

If a circle passes through the point (a,b)and cuts the circles x^(2) +y^(2) =4 orthogonally then the locus of its centre is

Answer»

` 2ax+ 2BY + a^(2) +b^(2) + 4= 0`
` 2ax-2by -(a^(2) +b^(2) +4) =0 `
` 2ax -2by +(a^(2) +b^(2) +4) =0`
` 2ax+2by -(a^(2) +b^(2) +4) =0 `

Answer :D
27817.

If the area bounded by the curves y=ax^2 and x=ay^2,(a gt 0) is 3.sq. units then the value of a is

Answer»

`(2)/(3)`
`(1)/(3)`
1
4

Answer :B
27818.

Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.

Answer»


ANSWER :`(16)/(31)`
27819.

From 1,2,3,…..20 if two natural numbers are selected, find the probability of getting both even if sum of the selected numbers is even.

Answer»


ANSWER :`(1)/(2)`
27820.

If polars of A,B w.r.t to the circle having centre O and radius r intersect at P then OA^(2)-OB^(2)=AP^(2)-BP^(2)

Answer»


ANSWER :`=AP^(2)-BP^(2)`
27821.

Find the particular solution of the differential equations log((dy)/(dx)) = 3x + 4y given that y = 0 when x = 0.

Answer»


ANSWER :`4e^(3x) + 3e^(-4Y) - 7 = 0`
27822.

Write solution ofdy/dx=2/y,y(0)=0

Answer»

SOLUTION :`dy/dx=2/yrArrintydy=int2dxrArry^2/2=2x+C` Using the CONDITION y (0)=0 we get C = 0 `therefore` The requaid solution is `y^2/2=2x"i.e",y^2=4x`
27823.

Examine that sin |x| is a continuous function.

Answer»


ANSWER :`SIN |X|`
27824.

Draw the graph of y = e^(x) sin 2pix.

Answer»

Solution :We have `y = f(x) = e^(x) sin 2PIX`
First draw the GRAPH of `y = +-e^(x).`
Now `sin 2pix = 0` when `2pix = npi` or x = n/2, where `n in Z`
Also `sin 2pix = 1` for `2 pix = (4n + 1) (PI)/(2)` or `x = n + (1)/(4), n in Z`
and `sin 2pix = - 1` for `2 pix = (4n - 1) (pi)/(2)` or `x = n - (1)/(4), n in Z`
For `f(n + (1)/(4)) = e^(n + (1)/(4))` and `f(n - (1)/(4)) = -e^(n + (1)/(4))`
All points `f(n + (1)/(4), e^(n + (1)/(4)))` lie on the graph of `y = e^(x)`
and all points `f(n - (1)/(4), -e^(n - (1)/(4)))` lie on the graph of `y = -e^(x)`
Thus, the graph of the function is as shown in the following figure.
27825.

The order and degree of the differential equation (1+3y_(1))^(2//3) = 4y_(3) are

Answer»

`2//3`
3,1
3,3
1,2

Answer :C
27826.

If log_2 log_3 log_4 (x+1) =0, then x is greater than :-

Answer»

63
62
65
66

27827.

Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):}. At x=0,

Answer»

G is DIFFERENTIABLE but g' is not
g is differentiable while F is not differentiable
both f and g are NON differentiable
g is differentiable and g' is continuous

Answer :D
27828.

3+5+7+ …..sum to n terms

Answer»

`N(n+2)`
`n(n-2)`
`n^(2)`
`(n+1)^(2)`

ANSWER :A
27829.

From the employees of a company, 5 persons are selected to represent then in the managing committee of the company. The particulars of 5 persons are as follows : {:("S.No.","Name","Sex","Age in years"),(1,"Harish",M,""30),(2,"Rohan",M,""33),(3,"Sheetala",F,""46),(4,"Alis",F,""28),(5,"Salim",M,""41):} A person is selected at random from this group to act as spokesperson. Find the probability that the spokesperson will be either male or above 35 years.

Answer»


ANSWER :`(4)/(5)`
27830.

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim _(x to 0^(-)){(f (x))/(tna ^(2)x)} +|lim _(x to 2 ^(-))f (x)|+ lim _(x to 2 ^(+)) (5 f (x)) is equal to (where {.} denotes fraction part function)

Answer»

7
8
12
Non-existent

ANSWER :A
27831.

If a, b and c are non-coplanar vectors and r is a real number, then the vectors a+2b+3c, lambdab+4c and (2lambda-1)c are non-coplanar for

Answer»

no value of `lambda`
all except ONE value of `lambda`
all except two value of `lambda`
all values of `lambda`

SOLUTION :LET `alpha=a+2b+3c, beta=lambdab+4c`
and `GAMMA (2lambda-1)c`
Then,`[ alpha, beta, gamma] = | (1, 2 , 3),(0 ,lambda, 4),(0,0,(2lambda-1))|[ "a b c"]`
`(alpha, beta, gamma] = lambda (2 lambda -1) [abc] `
Now, consider `lambda (2 lambda -1) =0`
`lambda =0,(1)/(2) "" [ because [abc] ne 0]`
Hence, `alpah, beta and gamma ` are non-coplanar for all value of `lambda` expcepttwo values`0 and (1)/(2)`.
27832.

Solve the following equations. x^(5) + 1 = 0

Answer»


ANSWER :`CIS(2k+1)pi/5,k=0,1,2,3,4`
27833.

Coefficient of x^50 in (1+x)^1000 + 2x (1+x)^(999)+3x^2 (1+x)^(999) +…...+ 1001 x^(1000) is

Answer»

`""^(1001) C_50`
`""^(1000) C_(50)`
`""^(1002) C_(50)`
`""^(1002) C_(51)`

Answer :C
27834.

What do the {z:|z-a|+|z+a|=2c} "where" |a|lt c represent?

Answer»

Solution :`{z:|z-a|+|z+a\=2e}`
`"where " |a|lt`
` Here z is a COMPLEX number .
Let `z=x=iy.`
`:.(xy)` is the point corresponding the complex number z.
'a' and '-a' be TWO fixed points.
`:.`Eqn.(1) implies that the SUM of the distancer of the point (x,y) from two points a' and '-a` is CONSTANT i.e.2c
`:.` The locat is an ellipse.
27835.

Compute the following: [[cos^2x, sin^2x],[sin^2x, cos^2x]]+[[sin^2x, cos^2x],[cos^2x, sin^2x]]

Answer»

SOLUTION :GIVEN SUM=`[[cos^2x+sin^2x, sin^2x+cos^2x],[sin^2x+cos^2x, cos^2x+sin^2x]]=[[1,1],[1,1]]`
27836.

If the line (x-3)/2=(y+k)/(-1)=(z+1)/(-5) lies on the plane 2x-y+z-7 = 0, then k = - (2,-1,-2)

Answer»


ANSWER :2
27837.

Derivative of tan2x6xtan8xw.r.t.x is

Answer»

`8SEC^(2)8x+6sec^(2)6x+sec^(2)2X`
`sec^(2)8x+6sec^(2)6x+sec^(2)2x`
`8sec^(2)8x-sec6sec^(2)6x-2sec^(2)2x`
`sec^(2)8x-sec^(2)6x-sec^(2)2x`

ANSWER :C
27838.

The solution of (x+3)/(x-2) le 2is

Answer»

`(-oo ,oo)`
`(-oo, 2] uu (7, oo)`
`(-oo, 2) uu [7 , oo)`
`[7,oo)`

ANSWER :C
27839.

Find the number· of proper divisors of 15!

Answer»


ANSWER :4030
27840.

If |(a^(2)+lamda^(2),ab+clamda,ca-blamda),(ab-clamda,b^(2)+lamda^(2),bc+alamda),(ca+blamda,-bc+alamda, c^(2)+lamda^(2))||(lamda,c,-b),(-c,lamda,a),(b,-a,lamda)|=(1+a^(2)+b^(2)+c^(2))^(3), then find the value of lamda.

Answer»


Solution :We observe that the elements in the prefactor are the cofactors of the corresponding elements of the post factor.
Hence L.H.S. `=|(lamda, C, -b),(-c, lamda, a),(b, -a, lamda)|^(3)=[lamda(lamda^(2)+a^(2)+b^(2)+c^(2))]^(3)=(1+a^(2)+b^(2)+c^(2))^(2)implieslamda=1`
27841.

Assertion (A): The number of ways in which 4 sovereings can be given away when there are 6 applicants and any applicant may have either 0, 1, 2, 3 or 4 sovereigns is 126. Reason (R) : The number of ways that n sovereigns can be given away when there are k applicants and any applicant may have either 0,1,2,.... or n sovereigns is ""^((n+k-1))C_(k-1). The correct answer is

Answer»

Both A and R are true and R is the correct EXPLANATION of A
Both A and R are true but R is not correct explanation of A
A is true but R is FALSE
A is false but R is true

Answer :A
27842.

Evaluate the following determinates |{:(0,1,sectheta),(tantheta,-sectheta,tantheta):}|

Answer»


ANSWER :`sec^2theta`
27843.

If two dice are thrown simultaneously, then the probability that the sum of the numbers which come up on the dice to be more than 5 is_________

Answer»

`(13)/(18)`
`(5)/(18)`
`(1)/(6)`
`(5)/(36)`

ANSWER :A
27844.

sec^2(tan^(-1)(2))+"cosec"^2(cos^(-1)(3)) is equal to

Answer»

3
10
15
20

Answer :C
27845.

Find thescalar and vector components of the vector withinitial point (2,1) and terminal point (-5,7).

Answer»


ANSWER :VECTOR `VEC(AB)` are `7hati,6hatj`.
27846.

Find AB, if A=[(6,9),(2,3)] and B=[(2,6,0),(7,9,8)].

Answer»


ANSWER :`[{:(75,117,72),(25,39,24):}]`
27847.

int e^(x^3) . 5^(x^2) . x. [2log 5+ 3x] dx = …...... + C.

Answer»

`E^( X^3) . 5^(x^2) .x`
`(1)/(6).e^(x^3) . 5^(x^2)`
`(1)/(6) .e^(x^3) . 5^(x^2) .x`
`e^(x^3) . 5^(x^2)`

ANSWER :D
27848.

Let A = ((a,b),(c,d)) where a,b,c,d in R . Ad ne 0 If (a+d) A-A^(2) =A then

Answer»

a=d
a=d=1
a+d=0
a+d=1

Answer :B
27849.

Differentiate the functionsx^(x cos x) + (x^(2) + 1)/(x^(2)-1)

Answer»


Answer :`x^(x cos x) [cos x. (LOG +1)-x.log x.sin x] - (4X)/((x^(2)-1)^(2))`
27850.

Find the area bounded by curves y=[cosA+cosS+cosC] and y=[7sin.(A)/(2)sin.(B)/(2)sin.(C )/(2)] (where [.] denotes the greatest integer function and A,B, C are angles of a triangle) and curve |x-4|+|y|=2.

Answer»


ANSWER :3