Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

28101.

(sin 7 theta+ 6 sin 5 theta+17sin 3 theta+12sin theta)/(sin 6 theta+5 sin 4 theta+12sin 2theta)

Answer»

`2 COS THETA`
`cos theta`
`2 SIN theta`
`sin theta`

ANSWER :A
28102.

Find x if abs[[2,4],[5,1]]=abs[[2x,4],[6,x]]

Answer»

Solution :The given equation may be WRITTEN as
2-20 = `2x^2 - 24 IMPLIES -18 = 2x^2 - 24 implies 2x^2 = 6 implies x^2 = 3`
28103.

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

Answer»

`lim_(xto0)(f(x)=SIN1`
`lim_(xto0)f(x)=1`
`lim_(xto0)f(x)` does not EXIST
`lim_(xto0)f(x)` EXISTS but `f(x)` is not CONTINUOUS at x=0

Answer :C
28104.

A square is inscribed in the circlex^(2)+y^(2)-4x+6y-5=0 whose sides are parallel to co-ordinate axes then vetices of square are

Answer»

(5,0),(5,-6),(-1,0),(-1,-6)
(5,1),(5,-6),(-,1),(-1,-6)
(5,-1),(5,6),(-1,0),(1,-6)
(0,5),(-6,5),(0,-1),(6,1)

ANSWER :A
28105.

(1-omega +omega^2)(1+omega-omega^2)=4

Answer»

SOLUTION :L.H.S.`=(1-omega+omega^2)(1+omega-omega^2)`
`= (-omega-omega)(-omega^2-omega^2)(:' 1+omega+omega^2=0)`
`(-2omega-2omega^2)=4omega^3=4=`R.H.S.
28106.

z = x + iy and w = (1 - iz)/(z-i) , then |w| = 1 implies in the complex plane

Answer»

z lies on the imaginary AXIS
z lies on the real axis
z lies on the unit circle
z lies on the PARABOLA

ANSWER :B
28107.

Let f(x) = x^3 + ax^2 + bx + c and g(x) = x^3 + bx^2 + cx + a, where a, b, c are integers. Suppose that the following conditions hold- (a) f(1) = 0, (b) the roots of g(x) = 0 are the squares of the roots of f(x) = 0. Find the value of: a^(2013) + b^(2013) + c^(2013)

Answer»


ANSWER :`-1`
28108.

Evaluate the following determinants. [[1,0,0],[0,1,0],[0,0,1]]

Answer»

SOLUTION :`[[1,0,0],[0,1,0],[0,0,1]]=1[[1,0],[0,1]]`=1-0=1
28109.

Removesecondterm( secondhigherpowerof x )fromthe equation x^3-6x^2 +4x -7=0

Answer»


ANSWER :`x^3 -8x-15=0`
28110.

If A is the set of students of a school then write, which of following relations are Universal, Empty or neither of the two. R_(1)={(a,b):a,b " are ages of students and" |a-b| gt 0} R_(2)={(a,b):a,b " are weights ofstudents, and "|a-b|lt0} R_(3)={(a,b):a,b " are students studying in same class"}

Answer»


ANSWER :`R_(1)` : is universal RELATION.
`R_(2)`: is EMPTY relation.
`R_(3)`: is NEITHER universal nor empty
28111.

int_(0)^(2)[x^(2)]dx=

Answer»

1)`5-sqrt2+sqrt3`
2)`5-sqrt2-sqrt3`
3)`-5-sqrt2-sqrt3`
4)`5+sqrt2-sqrt3`

Answer :B
28112.

As he reaches the exit of the market, Mario notices five people who are gathered for an eat-as-much-as-you-can competition. There is a clear order in their hunger (i.e. no two people are identically hungry) and the person who was more hungry initially (at the beginning of the competition) wins in a face-off. How many face-offs are required to rank everyone according to their initial hunger? Note : Face-offs should be sufficient to guarentee rank of everyone in any case

Answer»

Solution :Note ​ : ​ The face­offs are independent of each other ​(their hungers will have their initialvalues before each faceoff). 
at least 7 matches are needed.
Denote the players by A, B, C, D and E.
1. First, A playsagainst B, while C plays against D. Without loss of generality, suppose Aand C are the winners.
2. Then, let A play C in the winners’ match. Without loss of generality, suppose A WINS. Upto this point, we have determined that A gt B and A gt C gt D.
3. Now, we determine the position of E within the A gt C gt D CHAIN. This can be achieved intwo matches. First let E play against C. If E wins, then let him play against A. Otherwise lethim play against D. After this, we have a complete ORDERING of A, C, D and E.4. Finally we have to find the position of B using only two more matches.So far we only have A gt B. There are two cases. If the previous step PRODUCED E gt A gt C gt D.Then we can simply play B against C and D to complete the ordering. If A gt E occurs instead,then we may, without loss of generality, ASSUME that A gt E gt C gt D since none of E, C or Dhave played against B. Now we can simply repeat the method used in the previous step tofind the position of B amongst E gt C gt D, by first matching B against C, then E or Ddepending on the outcome.
In all cases, we have determined the complete ordering in 7 matches.
28113.

If perpendicular from the point P(a,b,c) drawn to YZ- and ZX- plane meet tham in the points L and M respectively, then equation of plane OLM is

Answer»

ax+by +cz=abc
bcx + CAY = abc
bcx + cay= abc
ax+ by + cz=1

Answer :C
28114.

Find the angle between two vectorsoversetrarra"and"oversetrarrb with magnitudes sqrt3"and"2 respectively havingoversetrarra.oversetrarrb=sqrt6.

Answer»

SOLUTION :`COS THETA =(veca.vecb)/(|veca|.|vecb|)`
`SQRT6/(sqrt3xx2)=sqrt2/2 =1/sqrt2`
` IMPLIES theta=pi/4`
28115.

A coin is tossed three times. Find the probability of getting at least 2 heads

Answer»


ANSWER :A coin is tossed three TIMES. `S={HHH,HT T, HTH,THH,T TH, THT,HHT,T T T}`
`|S|=8`
LET C be the event of GETTING at least 2 HEADS
`thereforeC={HTH,THH,HHT,HHH}`
`implies |C|=4`
`therefore P(C)=|C|/|S|=4/8=1/2`
28116.

A random variable X has the following probability distribution : find the value of k

Answer»


ANSWER :0.15
28117.

The smallest positive angle which satisfies the equation 2sin^(2)theta+sqrt(3)costheta+1=0, is

Answer»

`(5pi)/(6)`
`(2PI)/(3)`
`(pi)/(3)`
`(pi)/(6)`

ANSWER :A
28118.

P(2, -1, 4) and Q (4, 3, 2) are given points. Find the prove which divides the line joining P and Q in the ratio 2 : 3. (i) Internally (ii) Externally (Using vector method).

Answer»


Answer :(i) `((14)/(5),(3)/(5),(16)/(5))`(II) `(-2,-9,8)`
28119.

A teacher wants to take 20 students to a park. He can take exactly 5 students at a time and will not take the same group more than once. Find the number of times that the teacher can go to the park

Answer»


ANSWER :`""^(20)C_5`
28120.

A teacher wants to take 20 students to a park. He can take exactly 5 students at a time and will not take the same group more than once. Find the number of times each student can go to the park.

Answer»


ANSWER :`""^(19)C_4`
28121.

Refer to Question 8. If the grower wants to maximise the amount of nitrogen added to the garden, how many bags of each brand should be added ? What is the maximum amount of nitrogen added ?

Answer»


ANSWER :The MAXIMUM AMOUNT of NITROGEN is 595 KG.
28122.

If P = (1, 5, 4) and Q = (4, 1, -2) then find the d.r. of PQ.

Answer»

`LT3, 4, 6gt`
`lt3, -4, -6gt`
`larr3, -4, -6gt`
`lt3, 4, -6gt`

ANSWER :B
28123.

Evaluate the following integrals int_0^2x^2e^(x^3)dx

Answer»

SOLUTION :`int_0^2e^(x^3)x^2dx`
`int_0^8e^6(1/3)dt=1/3(e^8-1)`
28124.

The maximum value of variance in binomial distribution withparameters n and p is_____.

Answer»

Solution :VARIANCE =npq where Q = 1 -p, and `0LTPLT1` Now variance is maxium when `p=q=1/2` Thus maximum value of variance `=n/4` Let the number of trails =n and P(succes)=P.
28125.

Solve the following systems of linear inequalities graphically : x gt y , x lt 1, y gt 0.

Answer»

Solution :
Step-2 : Let us consider a point (2,1) that does not lie on any of the lines. Putting x = 2, y = 2 In the inequalities we get `RARR` (2,1) satisfies x `gt` y and y `gt` 0 but does not satisfy x `lt` 1 thus the SHADED REGION is the solution region.
28126.

Find int(x^(4)dx)/((x-1)(x^(2)+1))

Answer»


ANSWER :`(X^(2))/(2)+x+(1)/(2)log|x-1|-(1)/(4)log (x^(2)+1)-(1)/(2)TAN^(-1)x+c`
28127.

Find the equation of the circle which cuts the following circles orthogonally. x^(2)+y^(2)+4x-7=0,2x^(2)+2y^(2)+3x+5y-9=0,x^(2)+y^(2)+y=0

Answer»


ANSWER :`X^(2)+y^(2)-26/5 x+34/5 y-17/5=0`
28128.

An aeroplane flying with uniform speed horizontally one kilometer above the ground id observed at an elevation of 60^(@). Aftar 10s if the elevation is observed to be 30^(@), then the speed of the aeroplane (in km/h) is

Answer»

`240//SQRT3`
`200 sqrt3`
`240 sqrt3`
`120//sqrt3`

ANSWER :C
28129.

If a_0, a_1 , a_2 …..a_n are binomial coefficients then (1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) =

Answer»

`((N -1)^n)/(n!)`
`((n + 1)^n)/(n!)`
`((n +1)^(2N))/(n!)`
`((n - 1)^n)/(2n!)`

ANSWER :B
28130.

If p,q are roots of the quadratic equationx^(2)-10rx -11s =0 and r,sare roots of x^(2)-10px -11q=0 then find the value ofp+q +r+s.

Answer»


ANSWER :1210
28131.

Find the equation of a curve passing through the point (0,0) and whose differentialequation is y' = e^(x) sin x.

Answer»


ANSWER :`2y - 1 = e^(X)(sin x - COS x)`
28132.

int (secx+ tan x)^(2)dx=...

Answer»

`2(SEC X+tanx)-x+c`
`(1)/(3) (secx+tanx)^(3)+c`
`sec x(secx+tanx)+c`
`2(secx+tanx)+c`

Answer :A
28133.

Let m be the smallest odd positive iteger for which 1 + 2+ …..+ m is a square of an integer and let n be the smallest even positive integer for which 1 + 2+ ……+ n is a square of an integer. What is the value of m + n ?

Answer»


ANSWER :9
28134.

int_(1//e)^(e)|logx|dx=

Answer»

`1 - 1/e`
`1+ 1/e`
`2( 1- 1/e)`
`(1+ 1/e)`

ANSWER :C
28135.

The probability of getting atleast two heads, when tossing a coin three times is……….

Answer»

`(1)/(8)`
`(3)/(8)`
`(1)/(2)`
`(5)/(8)`

Answer :C
28136.

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=

Answer»

only I is true
only II is true
both I and II are true
neither I nor II true

Answer :C
28137.

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

Answer»


ANSWER :7
28138.

f: R rarr R, f(x) is a differentiable function such that all its successive derivatives exist. f'(x) can be zero at discrete points only and f(x)f''(x) le 0 AA x in R If alpha and beta are two consecutive roots of f(x) = 0, then

Answer»

`f''(GAMMA) = 0 gamma in(alpha , beta)`
`f'''(gamma) = 0 gamma in(alpha , beta)`
`f''''(gamma) = 0 gamma in(alpha , beta)`
`f'''''(gamma) = 0 gamma in(alpha , beta)`

Answer :B
28139.

If area of triangle is 35 sq. units with vertices (2,-6), (5,4)and (k,4), then k=…......

Answer»

`-12,-2`
`-20`
`1.2`
`12,-2`

ANSWER :D
28140.

Integrate the functions cos^(3)xe^(logsinx)

Answer»


ANSWER :`-1/4cos^(4)x+C`
28141.

Find the number of radians in cos^(-1)(-0.5624)

Answer»

`-0.97`
`0.97`
`1.77`
2.17

Solution :SET you calculator to RADIAN mode, and ENTER 2ND `COS^(-1)(-0.5624)`.
28142.

(a + b) xx c + (b + c) xx a + (c + a) xx b =

Answer»

0
`- [a B C]`
2 [a b c]
[a b c]

ANSWER :D
28143.

If ((1 + i)/(1- i))^(x) = 1 then

Answer»

x = 4N where n is any POSITIVE integer
x = 2n where n is any positive integer
x = 4n + 1 where n is any positive integer
x = 2n + 1 where n is any positive integer

Answer :A
28144.

If anebnecand |{:(a,a^3,a^4-1),(b,b^3,b^4-1),(c,c^3,c^4-1):}|=0 then prove that abc(ab+bc+ca)=a+b+c

Answer»


ANSWER :ABC(ab+bc+ca)=a+b+c
28145.

Find the general solution of e^(x) tan ydx + (1 - e^(x))sec^(2)y dy = 0

Answer»


ANSWER :`TAN y = C (1 - E^(X))`
28146.

A ladder rests against a wall at an angle of 35^(@). Its foot is pulled away through a distance a, so that it slides a distance b down the wall, finally making an angle of 25^(@) with the horizontal, then a/b =

Answer»

1
`1//SQRT(3)`
`sqrt(3)`
`sqrt(3)//2`

ANSWER :B
28147.

If vec(alpha)=(1)/(a)hati+(4)/(b)hatj+b hatk and vec(beta)=b hati+a hatj+(1)/(b)hatk then the maximum value (10)/(5+vec(alpha).vec(beta) is …………

Answer»

1
5
2
3

Answer :A
28148.

If ""^(n)C_(4)=""^(n)C_(6), find n.

Answer»


ANSWER :10
28149.

Find values of x for which |{:(3,x),(x,1):}|=|{:()3,2),(4,1):}|

Answer»


ANSWER :`(x=+-2sqrt2)`
28150.

Let ABCD be a quadrilateral with /_CBD=2/_ADB, /_ABD=2/_CDB, AB=BC, then

Answer»

`AD=CD`
`/_ADB=/_CDB`
`/_CBD=/_ABD`
`/_ADC` is`(2pi)/3`

Solution :`2x=/_CBD`
`2y=/_ABD`
In `/_\CBD`
`(sin(pi-(2y+x)))/(sinx)=(BD)/(BA)=(BD)/(BC)=(sin(pi-(2x+y)))/(SINY)`
`impliessin(2+x)siny=sin(2x+y)sinx`
`=1/2[cos(y+x)-cos(3y+x)]=1/2[cos(x+y)-cos(3x+y)]`
`0ltx+y=1/2ABClt(pi)/2`
`0LT(3y+x)+(3x+y)lt2pi`
`=:. 3y+x=3x+yimpliesx=y`
`implies/_ABD=/_CBDimpliesAD=CD`