InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 3451. | 
                                    d, e, and f are in GP | 
                            
| 
                                   Answer»  d, e and f are in GP `:. ""b^(2) = ac`..(i) and the given quadratic equations `AX^(2) + 2b x + c = 0`...(i) `dx^(2) + 2ex + f = 0`...(III) For quadratic Eq. (ii) , the DISCRIMINANT `D = (2b)^(2) - 4ac` `= 4 (b^(2) - ac) = 0` [from Eq. (i)] `rArr` Quadratic Eq. (ii) have equal roots, and it is equal to `x = -(b)/(a)`, and it is given that quadratic Eqs. (ii) and (iii) have a common root, so `d (-(b)/(a))^(2) + 2e (-(b)/(a)) + f = 0` `rArr db^(2) - 2eba + a^(2) f = 0` `rArr d (ac) - 2eab + a^(2) f = 0 "" [ :' b^(2) = ac]` `rArr d (ac) - 2eab + a^(2) f = 0 "" [ :' a != 0]` `rArr 2eb = dc + af` `rArr 2 (e)/(b) = (dc)/(b^(2)) + (af)/(b^(2))` [dividing each term by `b^(2)`] `rArr 2 ((e)/(b)) = (d)/(a) + (f)/(c) "" [ :'b^(2) = ac]` So, `(d)/(a), (e)/(b), (f)/(c)` are in AP. Alternate Solution Given, three distinct numbers a, b and c are in GP. Let `a = a, b = ar, c = ar^(2)` are in GP, which satisfies `ax^(2) + 2bx + c = 0` `:. ax^(2) + 2(ar) x + ar^(2) = 0` `rArr x^(2) + 2rx + r^(2) = 0 "" [ :' a != 0]` `rArr (x + r)^(2) = 0 rArr x = -r` According to the equation, `ax^(2) + 2bx + c = 0 and dx^(2) + 2ex + f = 0` have a common root. So, `x = -r` satisfies `dx^(2) + 2ex + f = 0` `:. d(-r)^(2) + 2e(-r) + f = 0` `rArr dr^(2) - 2er + f = 0` `rArr d((c)/(a)) - 2e ((c)/(b)) + f = 0` `rArr (d)/(a) - (2e)/(b) + (f)/(c) = 0` `rArr (d)/(a) + (f)/(c) = (2e)/(b) "" [ :' c != 0]`  | 
                            |
| 3452. | 
                                    Consider f:[0,1]toR has a continuous derivative and int_(0)^(1)f(x)dx=0, then for ever alpha epsilon(0,1) |int_(0)^(1)f(x)dx|lex. "Max"_(0le x le 1)|f^(')(x)| then | 
                            
| 
                                   Answer»  `[1/k]gt 5`  | 
                            |
| 3453. | 
                                    Show that the line whose vector equation isvec r=(2 hat i-2 hat j+3)+lambda( hat i- hat j+4 hat k)is parallel to the plane whose vector equationvec r( hat i+5 hat j+ hat k)=5. Also, find thedistance between them. | 
                            
| 
                                   Answer»  | 
                            |
| 3454. | 
                                    If vec(a),vec(b),vec(c) are the position vectors of points A, B, C respectively such that 5vec(a)-3vec(b)-2vec(c)=vec(0), then | 
                            
| 
                                   Answer»  C divides BA INTERNALLY in ratio 5 : 3  | 
                            |
| 3455. | 
                                    ""^20C_10.""^15C_0 + ""^20C_9.""^15C_1 + ""^20C_8.""^15C_2 + …..+""^20C_0.""^15C_10 = | 
                            
| 
                                   Answer»  `""^20C_10`   | 
                            |
| 3456. | 
                                    For x in R, the least value of (x^(2)-6x+5)/(x^(2)+2x+1) is | 
                            
| 
                                   Answer»  `-1`  | 
                            |
| 3457. | 
                                    Ground state electronic configuration of 'C' written as [He] 2s^2 2p^2, it is not as [He], 2s^1,2p^3 , because | 
                            
| 
                                   Answer»  EXCHANGE ENERGY GT EXCITATION energy   | 
                            |
| 3459. | 
                                    If f.R rarr R,f(x)=(x^(2)+bx+1)/(x^(2)+2x+b),(b gt 1) " and " f(x), 1/f(x) have the same bounded set as their range, the value of b is | 
                            
| 
                                   Answer»  `2sqrt(3)-2`  | 
                            |
| 3460. | 
                                    If z = x +iy and if the point P in the argand plane represents z then find the locus of P satisfying the equation Re ((z + 1)/(z +i)) = 1 | 
                            
| 
                                   Answer»  | 
                            |
| 3461. | 
                                    If z = x +iy and if the point P in the argand plane represents z then find the locus of P satisfying the equation |z+ 4i| + |z -4i| = 10 | 
                            
| 
                                   Answer»  | 
                            |
| 3462. | 
                                    Let P (alpha, beta, gamma) and Q(1,-1,0) be points such that the mid-point of PQ is R (x,y,z). If x is the AM of alpha and beta, y is the G.M. of beta and gamma and z is the H.M . Of gamma and alphathen : | 
                            
| 
                                   Answer»  | 
                            |
| 3463. | 
                                    A hyperbola whose transverse axis , centre (0,0) and foci (+- sqrt(10), 0) passes thorugh the point (3,2). i. Find the equation of the hyperbola. ii. Find its eccentricity . | 
                            
| 
                                   Answer»  II. `SQRT(2)`.  | 
                            |
| 3464. | 
                                    The set of values of 'a' for which(13 x-1 ) ^(2) + (13y -2) ^(2)=a( 5x+ 12y -1)^(2)represents an ellipse if | 
                            
| 
                                   Answer»  ` 1 LT a lt 2 `  | 
                            |
| 3465. | 
                                    I : If r alpha a + beta b represents a line passing through the points a, b then alpha + beta = 1. II : If r = alpha a + beta b + gamma c represents a plane passing through the points a, b, c then alpha + beta + gamma = 1. | 
                            
| 
                                   Answer»  only I is TRUE  | 
                            |
| 3466. | 
                                    Let w(x, y, z)=(1)/(sqrt(x^(2)+y^(2)+z^(2)))(x, y, z) != (0, 0, 0). Show that (del^(2)w)/(delx^(2))+(del^(2)w)/(dely^(2))+(del^(2)w)/(delz^(2))=0 | 
                            
| 
                                   Answer»  | 
                            |
| 3467. | 
                                    If [(1,1),(-1,1)][(x),(y)]=[(2),(4)],then the values of x and y respectively are | 
                            
| 
                                   Answer»  -3,-1  | 
                            |
| 3468. | 
                                    If 2veca*vecb = |veca| * |vecb| then the angle between veca & vecb is | 
                            
| Answer» Answer :D | |
| 3469. | 
                                    Find an anti derivative (or integral) of the following functions . e^(2x) | 
                            
| 
                                   Answer»  | 
                            |
| 3470. | 
                                    A hyperbola passing through a focus of the ellipse x^(2)/(169)+y^(2)/(25)=1. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1. Then, the equation of the hyperbola is, | 
                            
| 
                                   Answer»  `X^(2)/(144)-y^(2)/(9)=1`  | 
                            |
| 3471. | 
                                    On Z, define a relation R as follows: aRb if 5|(a-b)| Equivalent class [3] is equal to, | 
                            
| 
                                   Answer»  {……….,`-13, -8, -3,0, 3,8,`……}  | 
                            |
| 3472. | 
                                    If a line makes an angle of pi//4with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is | 
                            
| Answer» Answer :D | |
| 3473. | 
                                    f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ……… | 
                            
| Answer» Answer :C | |
| 3474. | 
                                    A ray of light comes light comes along the line L = 0 and strikes the plane mirror kept along the plane P = 0 at B. A(2, 1, 6)is a point on the line L = 0 whose image about P = 0 is A'. It is given that L = 0 is (x-2)/(3)= (y-1)/(4)= (z-6)/(5) and P =0is x+y-2z=3. The coordinates of B are | 
                            
| 
                                   Answer»  `(5, 10, 6)`  `""x=2+ 3lamda, y=1 + 4 lamda, z=6+ 5lamda` LIES on PLANE `""x+y-2z=3` `rArr""2+3lamda +1 +4lamda- 2 (6+5lamda)=3` or `"" 3+7lamda-12-10lamda=3 or -3lamda=12 or lamda= -4` Point `B-= (-10, -15, -14)`  | 
                            |
| 3475. | 
                                    A ray of light comes light comes along the line L = 0 and strikes the plane mirror kept along the plane P = 0 at B. A(2, 1, 6)is a point on the line L = 0 whose image about P = 0 is A'. It is given that L = 0 is (x-2)/(3)= (y-1)/(4)= (z-6)/(5) and P =0is x+y-2z=3. The coordinates of A' are | 
                            
| 
                                   Answer»  `(6, 5, 2)`  `""(x_(2)-2)/(1)= (y_(2)-1)/(1)= (z_(2)-6)/(-2)` `""=(-2(2+1-12-3))/(1^(2)+1^(2)+2^(2))=4` `rArr ""(x_(2), y_(2), z_(2))-= (6, 5, -2)`.  | 
                            |
| 3476. | 
                                    Value of "sin"^(-1)(1)/(sqrt(5))+cot^(-1)3 ''is | 
                            
| Answer» Solution :N/A | |
| 3477. | 
                                    A ray of light comes light comes along the line L = 0 and strikes the plane mirror kept along the plane P = 0 at B. A(2, 1, 6)is a point on the line L = 0 whose image about P = 0 is A'. It is given that L = 0 is (x-2)/(3)= (y-1)/(4)= (z-6)/(5) and P =0is x+y-2z=3. If L_(1) =0is the reflected ray, then its equation is | 
                            
| 
                                   Answer»  `(X+10)/(4)= (y-5)/(4)= (z+2)/(3)`  `""(x+10)/(16)= (y+15)/(20) = (z+14)/(12)` or `(x+10)/(4)= (y+15)/(5)= (z+14)/(3)`  | 
                            |
| 3478. | 
                                    A normal to the hyperbola (x^(2))/(4)-(y^(2))/(1)=1 has equal interceptsonpositivex and positivey-axes. If this normaltouches the ellipse(x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then3(a^(2)+b^(2)) is equal to : | 
                            
| 
                                   Answer»  5  | 
                            |
| 3480. | 
                                    Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1):}|=1+a^2+b^2+c^2 | 
                            
| 
                                   Answer»  | 
                            |
| 3481. | 
                                    If z_(1) , z_(2) are conjugate complex numbers and z_(3) , z_(4) are also conjugate , then Arg ((z_(3))/(z_(2)))= | 
                            
| 
                                   Answer»  ARG `((z_(1))/(z_(4)))`  | 
                            |
| 3482. | 
                                    Let S be the set of 2xx2 matrices given by S={A=[[a,b],[c,d]],"where" a,b,c,d,in I},such that A^(T)=A^(-1) Then | 
                            
| 
                                   Answer»  number of matrices in set s is equal to 6 `implies [[a,b],[c,d]],[[a,c],[b,d]]=[[1,0],[0,1]]` `impliesa=0,b=pm1,d=0,c=pm1` therefore Total 8 matrices are POSSIBLE They are `[[1,0],[0,1]],[[1,0],[0,-1]],[[-1,0],[0,1]],[[-1,0],[0,-1]]` `[[0,1],[1,0]],[[0,-1],[1,0]],[[0,1],[-1,0]],[[0,-1],[-1,0]]` ALSO `|A-I_(2)|=|A-AA^(T)|=|A||I_(2)-A^(T)|` `=|A||(I_(2)-A^(T))^(T)|=|A||I_(2)-A|` `=|A||A-I_(2)|` `implies|A|=1(As,|A-I_(2)|ne 0)` except `A=1=[[1,0],[0,1]]` where `|A|=1 but` `| A-I_(2)|=0`  | 
                            |
| 3483. | 
                                    For any acute angled triangleABC,(sinA)/(A)+(sinB)/(B)+(sinC)/(C ) can | 
                            
| 
                                   Answer»  1 `rarr f(x)=(xcosx-sinx)/(x^(2))=(cosx(x-tanx))/(x^(2))` `rarr f(X)=(-x^(2)sinx-2xcosx+2 sinx)/(x^(3))` g(x)=`-x^(2)sinx-2xcosx+2 sinx` `g(X)=-x^(2)cosxlt0 forall x in (0,pi//2)` `rarr for xgt0` we have `g(X) lt g(0)i.e g(x)lt0` `rarr f(X)lt0andf(x)lt0,x in (0,(pi)/(2))` `rarr f(a+B+C)/(3)gtf(A)+f(B)+f(C )/(3)` `rarr (SINA)/(A)+(sinB)/(B)+(sinC)/(C )LE(9sqrt(3))/(2PI)=2.5`  | 
                            |
| 3484. | 
                                    inte^(3x)cos4xdx=.........+c | 
                            
| 
                                   Answer»  `(E^(3x))/(25)(3cos4x-4sin4x)`  | 
                            |
| 3485. | 
                                    vec(a)=hati+hatj+sqrt(2)hatk,vec(b)=b_(1)hati+b_(2)hatj+sqrt(2)hatk and vec( c )=5hati+hatj+sqrt(2)k are three vectors. The projection of the vector vec(b) on vec(a) is |vec(a)|. If vec(a)+vec(b) is perpendicular to vec( c ) then |vec(b)|= ........... | 
                            
| Answer» Answer :D | |
| 3486. | 
                                    1+(1)/(2). (3)/(5) + (1.3)/(2.4) . (9)/(25)+(1.3.5)/(2.4.6).(27)/(125)+…...oo= | 
                            
| 
                                   Answer»  `SQRT(5/2)`   | 
                            |
| 3487. | 
                                    The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)= | 
                            
| 
                                   Answer»  `(a^(2))/(6)`   | 
                            |
| 3488. | 
                                    Find an approximate value of the following correctedto 4 decimal places. root(7)(127) | 
                            
| 
                                   Answer»  | 
                            |
| 3489. | 
                                    Statement Isin ^(-1)(1/sqrte) gt tan^(-1)(1/sqrtpi) Statement II sin^(-1) x gt tan^(-1) y " for " xgt y , AA x, y in (0,1) | 
                            
| 
                                   Answer»  STATEMENT I is True, Statement II is True, Statement II is a CORRECT explanation for statement I  | 
                            |
| 3490. | 
                                    If y=tan^-1(cotx)+cot^-1(tanx), find (dy)/dx. | 
                            
| Answer» SOLUTION :`y=tan^-1(COTX)+cot^-19tanx)=tan^-1tan(pi/2-x)+cot^-1cot(pi/2-x)=pi/2-x+pi/2-x=pi-2xrArr(DY)/dx=-2` | |
| 3491. | 
                                    Consider all the 5 digit numbers where each of the digits is chosen from the set { 1, 2, 3, 4} . Then the number of numbers, which contain all the four digits is : | 
                            
| 
                                   Answer»  240  | 
                            |
| 3493. | 
                                    If Sin^(-1)(1)-"Sin"^(-1)sqrt(3/x)=pi/6 and x is a root of the equation x^(2)+kx-12=0, then value of k is | 
                            
| 
                                   Answer»  -2  | 
                            |
| 3494. | 
                                    Find derivatives of the following functions.sin^4x | 
                            
| 
                                   Answer» SOLUTION :`y = SIN^4 X  dy/dx = d/dx(sin x)^4 = 4(sin x)^3.d/dx(sin x) = 4 sin^3 x. COS x`  | 
                            |
| 3495. | 
                                    The value of hati.(hatjxxhatk)+hatj.(hatkxxhati)+hatk.(hatixxhatj)=……. | 
                            
| 
                                   Answer»  1  | 
                            |
| 3496. | 
                                    If the vectors 2 hati - hatj + lamda hatk , hati - hatj + 2 hatk and 3 hati - 2 hatj + hatk are coplanar, then the value of lamdais : | 
                            
| Answer» ANSWER :A | |
| 3497. | 
                                    Five ordinary dice are rolled at random and sum of the numbers shown on them is 16. What is the probability that the numbers shown on each is any one from 2, 3, 4, 5. | 
                            
| 
                                   Answer»  | 
                            |
| 3498. | 
                                    CF is the internal bisector of angle C of angle ABC, then CF is equal to | 
                            
| 
                                   Answer»  `(2AB)/(a + B) cos.(C)/(2)`   `DELTA = Delta_(1) + Delta_(2)` `rArr (1)/(2) ab sin C = (1)/(2) b (CF) sin .(C)/(2) + (1)/(2) a (CF) sin.(C)/(2)` or `CF = (ab sin C)/((a + b) sin.(C)/(2)) = (2ab cos.(C)/(2))/(a+b)` Again in `DeltaCFB`, by the sine rule, we have `(CF)/(sin B) = (a)/(sin (pi -theta)) = (a)/(sin theta) = (a)/(sin (B+(C)/(2))) ""( :' theta + B + (C)/(2) = pi)` or `CF = (a sin B)/(sin (B +(C)/(2))) = (b sin A)/(sin (B +(C)/(2)))` [by sine rule]  | 
                            |
| 3499. | 
                                    A unit vector is coplanner with bar(i)+bar(j)+2bar(k) and bar(i)+2bar(j)+bar(k) and it is perpendicular to the vector bar(i)+bar(j)+bar(k). Then the vector ………….. | 
                            
| 
                                   Answer»  `(BAR(i)-bar(J))/(sqrt(2))`  | 
                            |
| 3500. | 
                                    Statement-1: pH of buffer solution always increases on increasing dilution. Statement-2: pH ofany acidic solution always increases on increasing dilution. | 
                            
| 
                                   Answer»  Statement-1 is true, statement-2 is true and statement-2 is CORRECT explanation for statement-1 .  | 
                            |