Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

4351.

If z_(1) = 8 + 4i , z_(2) = 6 + 4i andz be a complex number such that Arg ((z - z_(1))/(z - z_(2))) = (pi)/(4) , then the locus of z is

Answer»

`(X - 7)^(2) + (y- 5)^(2) = 2`
`(x - 7)^(2) + (y+ 5)^(2) = 2`
`(x - 7)^(2) + (y - 5)^(2) = 4`
`(x + 7)^(2) + (y + 5)^(2) = 4`

Answer :A
4352.

Find the chord of contact of(1,1 )with respect to the circlex^(2) + y^(2) =9

Answer»
4353.

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0then (alpha + beta)^(-1) + (beta + gamma)^(-1) + (gamma + alpha)^(-1) =

Answer»

<P>`(q^(2) - 2pr)/(r^(2))`
`(p^(2) + q)/(PQ - r)`
`(p^(2) - 2Q)/(r^(2))`
none

Answer :2
4354.

If the relation between x and y in order that the 20^(th) arithmetic mean between x and 2y is same as the 20^(th) arithmetic mean between 2x and y , (99 means being inserted in each case )is y = Kx, find K.

Answer»


ANSWER :4
4355.

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

Answer»

`AA1ltxlt(pi)/(2),f(x)` is an identity function
`AA(pi)/(2)ltxltpi,` the graph of f(x) is a STRAIGHT LINE having y intercept of `-pi`
`AA(pi)/(2)ltxlte`, the graph of f(x) is a straight line having y intercept of `-pi`
`AAxgte, f(x)` is a constant function

Solution :`AA1 ltx LT(pi)/(2), tan^(-1)tanx=x`
`and 0 lt log_(e)lt log_(e).(pi)/(2)lt1`
`rArr""f(x)=x`
`AA(pi)/(2)ltx lte, tan^(-1)tanx=x-pi`
and `0lt log_(e)XLT1`
`THEREFORE""(log_(e)x)^(n)=0`
`rArr""f(x)=x-pi`
and for `x gt e, log_(e)xlt1, therefore (log_(e)x)^(n)rarroo`
`rArr""f(x)=0`
4356.

Find P(A|B) ifP(B)=0.5 and P(A nnB)= 0.32

Answer»


ANSWER :0.64
4357.

int (1)/(7 + 5 cos x )dx =

Answer»

`(1)/(sqrt(5)) tan^(-1)( (1)/(sqrt(3)) tan ""(X)/(2) ) + c `
`(1)/(sqrt(6)) tan^(-1) ((1)/(sqrt(6)) tan"" (x)/(2) ) + c `
`(1)/(sqrt(7)) tan^(-1)(tan""(x)/(2)) + c `
`(1)/(sqrt(4)) tan^(-1) (tan ""(x)/(2)) + c `

ANSWER :B
4358.

Iff:R rarr R, S: R rarr R are defined by f(x) = 3x-4, g(x) = 5x-1 then, (fog^(-1))(2) =

Answer»

`11/5`
`-11/5`
`1/5`
`-1/5`

ANSWER :B
4359.

Using properties of determinants, prove that |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]| = 1

Answer»

SOLUTION :L.H.S. = `|[1,1+p,1+p+q],[0,1,2+p],[0,3,7+3p]|` by (`R_2toR_2-2R_1 and R_3toR_3-3R_1`)
=`|[1,1+p,1+p+q],[0,1,2+p],[0,0,1]|` by `R_3toR_3-3R_2`)
`= 1xx1xx1 = 1 =` R.H.S.
4360.

Choose the correct . The general solution of the differential equation (y dx - x dy)/y =0 isa) xy =c b) x= cy^2c)y = cxd)y= cx^2

Answer»

XY = C
`X = cy^2`
y = CX
`y = cx^2`

ANSWER :C
4361.

Find the following integrals int(4e^(3x)+1)dx

Answer»


ANSWER :`(4)/(3)e^(3X) + X + c`
4362.

Let PM be the perpendicualr from the point P(1, 2, 3) to x-y plane. If bar(OP) makes an angle theta with the positive dirction of z-axis and bar(OM) makes an angle phi with the positive direction of x axis, where O is the origin and theta and phi are acute angles, then

Answer»

`TAN theta=(SQRT(5))/(3)`
`sin theta sin phi=(2)/(sqrt(14))`
`tan phi =2`
`COS theta cos phi=(1)/(sqrt(14))`

Answer :A::B::C
4363.

In which of the following replacement of Cl^(-) is most difficult ?

Answer»




ANSWER :D
4364.

A man has 6 friends. The number of ways can he invite one or more of them to dinner is

Answer»

63
64
720
6

Answer :A
4365.

Prove the following : sinA+sin3A+sin5A =sin3A(1+2cos2A)

Answer»

SOLUTION :L.H.S. = sinA+SIN3A+sin5A
= sin3A+sin5A+sinA
sin3A+2sin5A+A/2cos5A-A/2
= sin3A+2sin3Acos2A
sin3A(1+2cos2A)=R.H.S.
4366.

Given that the two numbers appearing on throwing two dice are different. Find the probabitlity of the event the sum of numbers on the dice is 4.

Answer»


ANSWER :`1/15`
4367.

If underset(n to oo)(lim)(e(1-1/n)^(n)-1)/(n^(alpha)), exists and is equal to l (l != 0), then the value of 12(l – alpha) is :

Answer»

4
3
6
7

Solution :Let `N = 1/X`
`l=UNDERSET(x to 0)(lim)(E(1-x)^(1//x)-1)/((1//x)^(alpha)) = underset(x to 0)(lim) (e.e^((ln(1-x))/(x))-1)/(x^(-alpha))`
`l=underset(x to 0)(lim)((ln(1-x)/(x)+1)/(x^(-alpha))) = underset(x to 0)(lim) ((-x/2-(x^2)/3......)/(x^(-alpha)))`
For limit to exist `alpha = -1`
`l = -1/2`.
4368.

int (dx)/(cos(x+4)cos(x+2))=

Answer»

`(1)/(SIN2)LOG|cos(x+4)^2|+c`
`(1)/(2)log|(sec(x+2))/(sec (x+4))|+c`
`(1)/(sin2)log|(sec(x+4))/(sec(x+2))|+c`
`log|(sec(x+4))/(sec(x+2))+c|`

Answer :C
4369.

If vec(x)+vec(y)+vec(z)=0 and |vec(x)|=|vec(y)|=|vec(z)|=2 If the angle between vec(y) and vec(z) and theta. Then cosec^(2)theta+cot^(2)theta= …………..

Answer»

`(4)/(3)`
`(5)/(3)`
`(1)/(3)`
1

Answer :B
4370.

Solve the equation{:|( x+a,x,x),(x,x+a,x),(x,x,x+a) |:}=0,ane 0

Answer»


ANSWER :`X=(-a)/(3) `
4371.

Approximatevalueof(31)^(1/5)is____

Answer»

`2.01`
`2.1`
`2.0125`
`1.9875`

ANSWER :D
4372.

Integration by partial fraction : The value of int(x)/((x-2)(x-1))dx=....

Answer»

`"log"_(E)((x-2)^(2))/((x-1))+p`
`"log"_(e)((x-1)^(2))/((x-2))+p`
`(x-1)/(x-2)+p`
`2log_(e)((x-2)/(x-1))+p`

Answer :A
4373.

int(1)/(x^(3)(1-x))dx=

Answer»

`log((X)/(1-x))-(2X+1)/(2x^(2))+c`
`log((1-x)/(x^(3)))+c`
`log((x^(3))/(1-x))+c`
`(x^(-2))/(-2)-log(1-x)+c`

Answer :A
4374.

(cos 13^(@) - sin 13^(@))/(cos 13^(@) + sin 13^(@)) + (1)/(cot 148^(@)) =

Answer»

1
`-1`
0
`1//2`

ANSWER :C
4375.

Let the point B be the reflection of the point A(2,3) with respect to the line 8x-6y-23=0 Let lceiling_A and lceiling_B respectively. Be circles of radil 2 and I which centres A and B respectively. Let T be a common tangent to the circles lceilingA and lceiling B such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing thorugh A and B, then the length of the line segment AC is .............

Answer»


Solution :ACCRODING to given information the FIGURE is as following

From the figure, `AC=(2)/(sin THETA) .....(i)`
`becausesin theta =(1)/(CB)`
`(" from "Delta CPB) ......(ii)`
` and sin theta =(2)/(AC)=(2)/(CB+AB)("from "Delta CQA)......(iii)`
`because AB=AM+MB=2AM`
` =2(|(8xx2)-(6xx3)-23|)/(sqrt(64+36))=(2xx25)/(10)=500`
From Eqs. (ii) and (iii), we get
`sin theta=(1)/(CB)=(2)/(CB+AB)`
`rArr (1)/(CB)=(2)/(CB+5)`
`rArr CB+5=2GBrArr CB =5=(1)/(sin theta)`
From the EQ.(i),
`AC=(2)/(sin theta) =2xx5 =10,00`.
4376.

Write two different vectors having same direction.

Answer»


ANSWER :An INFINITE NUMBER of POSSIBLE answer.
4377.

The straight lines 2x+3y=5 and 6x-4y+k=0, k in R are the sides of [if the third line is not parallel any of these two lines]

Answer»

an EQUILATERAL triangle
RIGHT angled triangle
OBTUSE angled triangle
can not be the SIDES of a triangle

Answer :B
4378.

findthe multiplerootsof12x^3 +40x^2 +39 x + 9=0

Answer»


ANSWER :`(-3)/(2),(-3)/(2),(-1)/(3)`
4379.

Find the probability of getting atleast one head when 5 coins are tossed

Answer»


ANSWER :`31//32`
4380.

Find the middle term(s) in the expansionof n in N ((1)/(2)x-3y)^(20)

Answer»


SOLUTION :N/A
4381.

If alpha is a non-real root of x^(7) = 1 then alpha(1 + alpha) (1 + alpha^(2) + alpha^(4)) =

Answer»

2
-1
1
`-2`

ANSWER :B
4382.

For a , b in R the maximum [(a-1)(b-1)+(1-sqrt(1-a^2))(1-sqrt(1-b^2))]

Answer»

`2+sqrt2`
`2-sqrt2`
`3+sqrt2`
`3+2sqrt2`

ANSWER :D
4383.

Let T, be the r^(th) term of an A.P. whose first term is a and common difference is d If for some positive integers m, n, m != n, T_(m) = 1/n and T_(n) = 1/m, then a - d equals

Answer»

`1/m`
1
0
`1/m + 1/n`

ANSWER :C
4384.

If x in (pi, 2pi)" then " int sqrt(1 - cos 2 x )dx =

Answer»

`sqrt(2) ` sin X + C
`- sqrt(2)` sin x + C
`sqrt(2) ` cos x + C
`-sqrt(2)` cos x + C

ANSWER :C
4385.

IFA +B= 45 ^@, then( cot A -1)( cotB-1)isequalto

Answer»

1
`1/2`
`-1`
2

Answer :D
4386.

Let A_1,A_2,A_3,...,A_n are n Points in a plane whose coordinates are (x_1,y_1),(x_2,y_2),....,(x_n,y_n) respectively. A_1A_2 is bisected at the point P_1,P_1A_3 is divided in the ratio 1:2 at P_2,P_2A_4 is divided in the ratio 1:3 at P_3,P_3A_5 is divided in the ratio 1:4 at P_4 and the so on until all n points are exhausted. find the coordinates of the final point so obtained.

Answer»

Solution :`P_1` is midpoint of `A_1A_2`.
`THEREFORE""P_1-=((x_1+x_2)/(2),(y_1+y_2)/(2))`
`P_2` DIVIDES `P_1A_3` in `1:2`.
`therefore""P_2-=((2((x_1+x_2)/2)+x_3)/(2+1),(2((y_1+y_2)/2)+y_3)/(2+1))`
`-=((x_1+x_2+x_3)/(3),(y_1+y_2+y_3)/(3))`
Now, `P_3` divides `P_2A_4` in ` 1:3`
`therefore""P_3-=((3.((x_1+x_2+x_3)/3)+x_4)/(3+1),(3.((y_1+y_2+y_3)/3)+y_4)/(3+1))`
`-=((x_1+x_2+x_3+x_4)/(4),(y_1+y_2+y_3+y_4)/(4))`
PROCEEDING in this manner, we get
`P_n-=((x_1+x_2+x_3+....x_n)/(n),(y_1+y_2+y_3+....y_n)/(n))`.
4387.

In the following, [x] denotes thegreatest integer less than or equal to x. {:(,"Column I",,"Column II"),(A.,x|x|,p.,"continuous in(-1, 1)"),(B.,sqrt|x|,q.,"differentiable in (-1, 1) "),(C.,x+[x],r.,"strictly increasing (-1, 1)"),(D.,|x-1|+|x+1|" in(-1,1)",s.,"not differentiable atleast at one point in(-1, 1)"):}

Answer»


Solution :A. x|x| is continuous,DIFFERENTIABLE and strictly increasing in (-1, 1).
B. `sqrt|x|` is continuous in (-1, 1) and not differentiable at x = 0.
C. x+[x] is strictly increasing in (-1, 1) and DISCONTINUOUS atx = 0
`rArr` not differentiable at x = 0.
D. `|x-1|+|x+1|=2" in "(-1, 1)`
`rArr ` The FUNCTION is continuous and differentiable in (-1, 1) .
4388.

If P(A) = 2/3, P(B) = 4/9 and P(AcapB)=cap, then P(A'capB') is greater than or equal to

Answer»

`37/45`
`1/5`
`4/5`
`41/45`

ANSWER :A::B::C
4389.

Evaluate the following integrals. int(dx)/(e^(x)+e^(2x))

Answer»


ANSWER :`log((E^(x)+1)/(e^(x)))-1/e^(x)+c`
4390.

Let alpha=sqrt(19-8sqrt3)+sqrt(7+4sqrt3)and beta=sqrt(83-18sqrt2)-sqrt(6-4sqrt2),then log_(2)((alpha)/(beta)) lies in the interval

Answer»

`(-2,-1)`
`((-1)/(2),0)`
`(0,1)`
`(-1,(-1)/(2))`

Solution :`ALPHA=(4-sqrt3)+(2+sqrt3)=6AND beta=(9-sqrt2)-(2-sqrt2)=7.`
`thereforelog_(2)((alpha)/(beta))=log_(2)((6)/(7))`
`As,(1)/(sqrt2)lt6/7lt1implies(-1)/(2)ltlog_(2)((6)/(7))LT0`
4391.

There are fifteen players for a cricket match In how many ways the 11 players can be selected including a particular player?

Answer»


ANSWER :1001
4392.

Write the equation of the plane passing through x-axis and y-axis.

Answer»

SOLUTION :Any plane perpendicular to Z-axis has EQUATION z = 4 As it passes through `(1,-2,4) we have 4 = k `therefore` The REQUIRED equation is z = 4.
4393.

(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo)

Answer»

`(E+1)/(e-1)`
`(e)/(e-1)`
`1/(e-1)`
`(e-1)/(e+1)`

ANSWER :D
4394.

Find the area under the given curves a given line :y=x^4,x=1,x=5 and x-axis

Answer»

SOLUTION :AREA `=overset5underset1intydx=overset5underset1int x^4dx=[x^5/5]_1^5`
`1/5[5^5-1^5]=624.8`sq.units
4395.

Evaluate underset(0)overset(pi)int sinxdx

Answer»


ANSWER :2
4396.

The radical axis of x^(2) +y^(2) -2ax =0and x^(2) +y^(2)-2by =0is common tangent to the circles if

Answer»

` a GT B`
` a LT b`
` a= b `
` a=1 , b=2`

ANSWER :C
4397.

A firm has the following total cost and demand function: C(x)=x^3/3-7x^2+11x+50,x=100-pFind the profit function.

Answer»

<P>

ANSWER :`p(X)=x^3.3+6x^2-11x-50`
4398.

IF [x] denotesthegreatestinteger le x then[ 2/3] +[2/3 +1/99] +[2/3 +2/(99)]+ ………. [2/3 +(98 )/(99)] =

Answer»

99
98
66
65

Answer :C
4399.

Find the combined equation of the lines through the origin : (1) each making an ange of 45^(@) with the line 3x + y = 2. (2) each making an angle of pi//6 with the line 3x + y - 6 = 0 . (3) which form an equilateral triangle with the line3x + 4y = 8.

Answer»

Solution :`2X^(2) + 3xy - 2y^(2) = 0`
(2) `13X^(2) + 12xy - 3y^(2) = 0`
(3) `39x^(2) - 96xy + 11y^(2) = 0`.
4400.

Let A and B be two finite sets having m and n elements respectively such that m gt n. A mapping is selected at random from the set of all mappings from A to B. The probability that the mapping selected is an injective mapping is

Answer»

`(N!)/((n-m)!m^(n))`
`(n!)/((n-m)!n^(m))`
`(m!)/((n-m)!n^(m)`
none

Answer :D