InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 4401. |
Relation R = {(4,5),(1,4),(4,6),(7,6),(3,7)} then R^(-1)OR = ....... |
|
Answer» `{(1,1),(4,4),(7,4),(4,7),(7,7)}` |
|
| 4402. |
Find the values of the following integrals (i) int_(0)^(pi/2) sin^(4) x cos^(4) x dx |
|
Answer» |
|
| 4403. |
Let f : R to Rbe a continuous periodic function and T be the period of it. Then prove that for any positive integer n,int_(0)^(nT) f(x) dx=n int_(0)^(T) f(x) dx |
|
Answer» |
|
| 4404. |
A graph G has 'm' vertices of odd degree and 'n' vertices of even degree.Then which of the following statements is necessarily true? |
|
Answer» ` m+ n` is an ODD number |
|
| 4405. |
Construct a2xx2 matrix ,A=[a_(ij)], whose elements are given by : (i)a_(ij)=((i+j)^(2))/(2), (ii)a_(ij)=(i)/(j) (iii)a_(ij)=((i+2j)^(2))/(2) |
|
Answer» (ii) `=[{:(1,(1)/(2)),(2,1):}]` (III) `=[{:((9)/(2),(25)/(2)),(8,18):}]` |
|
| 4406. |
If lim_(n rarr infty ) [(1+ 1/x^(2))(1+ 2^(2)/n^(2))...(1+n^(2)/n^(2))]^(1//n)=k, then log k = |
|
Answer» `LOG 4 + pi/2 -1` |
|
| 4407. |
Regression equation of y on x and y be x + 2y - 5 = 0 and 2x + 3y - 8 = 0 respectively and the variance of x is 12. find the variance of y. |
|
Answer» |
|
| 4408. |
Find the coefficient of 1/y^10 in the expansion of (y^3+a^7/y^5)^10 |
|
Answer» SOLUTION :LET (R+1)th term contains `1/y^10`. ` THEREFORE (r+1)`term in the expansion of `(y^3+a^7/y^5)^10` is `"^10C_r (y^3)^(10-r)(a^7/y^5)^r` `"^10C_r y^(30-r) a^(7r) y^(-5R) = ^10C_r a^(7r) y^(30-8r)` `therefore y^(30-8r) = 1/y^10 = y^-10` or , 30-8r = -10 or, 8r = 40 or, r = 5 The coefficient of `1/y^10` is `"^10C_5 a^(7xx5) = (10!)/(5!5!) a^35 = 252a^35` |
|
| 4409. |
Find the number of irrational terms in the expansion of (5^(1//6)+2^(1//8))^(100). |
|
Answer» |
|
| 4410. |
In thermodynamic process pressure of a fixedmass of gas is changed in such a manner that the gas releases 30 joule of heat and 18 joule of work was done on the gas. If the initial internal energy of the gas was 60 joule, then, the final internal energy (in J) will be : |
|
Answer» `-30 = -18 +U_(2) -60` `U_(2) = 60-30+18 = 48`. |
|
| 4411. |
Approximately what percent of average annualGDP of Province P from 1996 - 2000 came from copper production? |
| Answer» ANSWER :A | |
| 4412. |
Find the most likely price in Mumbai (x) corresponding to the price of ₹ 70 at Kolkata (y) from the following data : {:(,"Mumbai", "Kolkata"),("Average price ",""67,""65),("Standard deviation ",""3 . 5 ,""2 . 5 ):} Correlation of coefficient = 0 . 5 |
|
Answer» |
|
| 4413. |
Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symmetric and a skew symmetric matrix. |
|
Answer» |
|
| 4414. |
If f (x ) =x ^(2) + (x ^(2))/((1 + x ^(2))) + (x ^(2))/( (1 + x ^(2))) + …+ (x ^(2) ((1 + x ^(2)) + … then x =0 |
|
Answer» `F (x)` has no LIMIT |
|
| 4415. |
The probability distribution of a random variable X is given below: (i) Determine the value of k. (ii) Determine P(X le 2) and P(X gt 2) (ii) Find P(X le 2) +P(X gt 2). |
|
Answer» |
|
| 4417. |
The value of 2^(1/4), 4^(1/8), 8^(1/16) ...... infty is |
|
Answer» 1 |
|
| 4418. |
Three coins are tossed simultaneously. Consider the event E 'three heads or three tails'F 'at least two heads' and G 'at the most two heads'. Of the pairs (E, F), (E, G) and (F, G) (i) Which are independent?, "" (ii) Which are dependent? |
|
Answer» |
|
| 4419. |
Twelve identical machines, running continuously at the same constant rate, take 8 days to complete a shipment. How many additional machines, each running at the same constant rate, would be needed to reduce the time required to complete a shipment by 2 days? |
|
Answer» 2 |
|
| 4420. |
Equation of the plane which bisects the line segment joining (-1,2,3) and (3,-5,6) perpendicularly, is |
|
Answer» 4x+2y-3z=28 |
|
| 4421. |
If range of f(x) = (x^(2) - 3x + 2)/(x^(2) - ax+ 4) is R- (1) then sum of all possible real value(s) of 'a' is |
|
Answer» 4 for range of `f(x)` to be R - {1} `x^(2) - ax + 4 = (x - 1)^(2) or x^(2) - ax + 4 = (x - 2)^(2)` not possible `""a = 4`. |
|
| 4422. |
If a, b,c gt 0& x,y,z in R" then the determinant"[{:(,(a^(2)+a^(-2))^(2),(a^(x)-a^(x))^(2),1),(,(b^(y)+b^(-y))^(2),(b^(y)-b^(y))^(2),1),(,(c^(x)+c^(-2))^(2),(c^(x)-c^(-z))^(2),1):}]= |
|
Answer» `a^(x)B^(y)C^(Z)` |
|
| 4423. |
Verify that A^(2)=I when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]. |
|
Answer» |
|
| 4424. |
If ninN,"then "2.4^(2n+1)+3^(3n+1) is divisible by |
|
Answer» 2 |
|
| 4425. |
P is a point inside a Delta ABC, D, E, F are the feet or perpendicular from P to the line BC, AB respectively. Show that (BC)/(PD)+ (CA)/(PE) + (AB)/(PF) ge (2s ^(2))/(Delta). Prove that equality holds if P is its incentre, s = semipermeter, Delta = area of triangle. |
|
Answer» |
|
| 4426. |
A random variable x has the following probability distribution. Determine (i) k(ii) p(xlt3) |
|
Answer» |
|
| 4427. |
If three unit vectors veca, vecb, vecc" satisfy "overset(-)a+overset(-)b+overset(-)c=overset(-)0, then the angle between overset(-)a and overset(-)b is |
|
Answer» `(2PI)/(3)` |
|
| 4428. |
Two forces F_(1)={2, 3} and F_(2)={4, 1} are specified relative to a general cartesian form. Their points of application are respectivel, A=(1, 1) and B=(2, 4). Find the coordinates of the resultantand the equation of the straight line l containing it. |
|
Answer» |
|
| 4429. |
If the variance of the distribution is 45.8, then the variance of the distribution. |
|
Answer» 93.6 |
|
| 4430. |
Assertion (A) : If alpha, beta are the roots of ax^(2) + bx + c = 0 then the equation whose roots are(alpha-1)/(alpha), (beta-1)/(beta) is c(1-x)^(2)+ b(1-x)+a=0Reason (R): If alpha, beta are the roots of f(x) = 0then the equation whose roots are (alpha-1)/(alpha) and (beta-1)/(beta) is f((1)/(1-x))=0 |
|
Answer» Both A, R are true and R EXPLAIN Assertion |
|
| 4431. |
If f : N to Z is defined by f(x)={{:("2 if "n = 3k", " k in Z),("10 if " n = 3k+1 " , "k in Z),("0 if " n = 3k +2", " k in Z):} then {n in N : f (n) gt 2) is equal to |
|
Answer» {3, 6, 4} |
|
| 4432. |
Let f:R to R be a positive increasing function with underset(x to oo) (f(3x))/(f(x)=1 |
|
Answer» 1 |
|
| 4434. |
If G is the centroid of the triangle PQR, where vec(GP)=2hat(i)+hat(j)+3hat(k),vec(GQ)=hat(i)-hat(j)+2hat(k), then the area of the triangle PQR is |
|
Answer» `SQRT(35)sq.units` |
|
| 4435. |
if f (x) =2 x +cot^(-1) x + en (sqrt(1+x^(2)) -x) the f(x): |
|
Answer» INCREASING in `[0,oo]` |
|
| 4436. |
If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0, then alpha^(2)+beta^(2) is equal to |
|
Answer» `a^(2)+2B^(2)` |
|
| 4437. |
The triangle formed by the tangent to the curve f(x)=x^2+bx-b at the point (1,1) and the coordinate axes, lies in the first quadrant , if its area is 2, then the value of b is : |
| Answer» Answer :C | |
| 4438. |
If D_1=|{:(1,yz,x),(1,zx,y),(1,xy,z):}|and D_2=|{:(1,1,1),(x,y,z),(x^2,y^2,z^2):}| then ,……… |
|
Answer» `D_1+2D_2=0` |
|
| 4439. |
If A = [(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and B = [(0,c,-b),(-c , 0,a),(b,-a,0)]then the product AB equals: |
|
Answer» I |
|
| 4440. |
int(dx)/(xsqrt(2ax-x^2))= |
|
Answer» `asqrt((2a-X)/(x))+C` |
|
| 4441. |
In triangle ABC, AD is prependicular to BC and DE is perpendicular to AB |
|
Answer» `{:(a,b,c,d),(p,r,Q,q):}` a. Area of `DeltaADB = (1)/(2) AD XX BD` `= (1)/(2) c sin B xx c COS B` `= (c^(2))/(4) sin 2B` b. Area of `DeltaADC = (1)/(2) AD xx CD` `= (1)/(2) b sin C xx b cos C = (b^(2))/(4) sin 2C` c. Area of `DELTAADE = (1)/(2) AE xx DE` `= (1)/(2) AD cos ((pi)/(2) - B) AD sin ((pi)/(2) - B)` `= (1)/(4) AD^(2) sin 2B` `= (1)/(4) c^(2) sin^(2) B sin 2B` d. Area of `DeltaBDE = (1)/(2) BE xx DE` `= (1)/(2) BD cos B xx AD sin ((pi)/(2) -B)` `= (1)/(2) c cos B cos B xx c sin B cos B` `= (1)/(4) c^(2) cos^(2) B sin 2B` |
|
| 4442. |
In the group G={1,5,7,11} under multiplication modulo 12, the solution of 7^(-1)ox_(12)(x ox_(12)11)=5 is x = |
|
Answer» 5 |
|
| 4443. |
If alpha, beta are two different values of theta which satisfy is bc cos theta cos phi + ac sin theta sin phi=ab, then prove that (b^(2)+c^(2)-a^(2)) cos alpha cos beta+ ac sin alpha sin beta= a^(2)+b^(2)-c^(2). |
|
Answer» |
|
| 4444. |
1+(1)/(4) + (1.3)/(4.8) + (1.3.5)/(4.8.12)+…...= |
|
Answer» `SQRT2` |
|
| 4445. |
A = {x : x in R, |x| lt 1}, B = {x : x in R,| x - 1| ge 1} " and " A cup B = R - D " then " D = |
|
Answer» `{x :1 LT x le 2}` |
|
| 4447. |
Let f(x)=x^(3)-3x^(2)+6AA x in R " and "g(x)={{:(max.f(t), x+1 le t le x+2","-3 le x le 0),(1-x " for " x ge 0):} Then find y=g(x) " for " x in [-3, 1]. |
|
Answer» Solution :`f(X)=x^(3)-3x^(2)+6` If `f'(x)=3x^(2)-6x=0`, then `x=0, 2` are the critical points of `f(x)`. `x=0` is the POINT of LOCAL MAXIMA and x=2 is the point of local minima. Clearly, `f(x)` is increasing in `(-oo,0)` and `(2, oo)` and decreasingin (0,2). Case 1 : ` x+2 le 0 rArr x le -2` `rArr " " g(x)=f(x+2), -3 le x le -2` Case2: `x+1 LT 0 ` and `0 lt x+2 lt 2` `x lt -1 ` and `-2 lt x lt 0` i.e., `-2 lt x lt -1 " " :. g(x)=f(0)` Case 3: `0 le x+1, x+2 le 2` `rArr -1 le x le 0, g(x)=f(x+1)` `rArr g(x)={{:(f(x+2)", " -3 le x lt -2),(f(0)"," -2le x lt -1),(f(x+1)"," -1 le x lt 0),(1-x ","0 lexlt1):}` |
|
| 4448. |
Match the following colum -I with column - II. |
|
Answer» <P>`{:(P,Q,R,S),(2,3,4,1):}` |
|
| 4449. |
Integrate the following rational functions : int(2x-1)/((x-1)(x+2)(x-3))dx |
|
Answer» |
|
| 4450. |
(a xx b) xx (c xx d) + (a xx c) xx (d xx b) + (a xx d) xx (b xx c) = |
|
Answer» [B C d]a |
|