Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

4401.

Relation R = {(4,5),(1,4),(4,6),(7,6),(3,7)} then R^(-1)OR = .......

Answer»

`{(1,1),(4,4),(7,4),(4,7),(7,7)}`
`{(1,1),(4,4),(4,7),(7,4),(7,7),(3,3)}`
`{(1,5),(1,6),(3,6)}`
NONE of these

Solution :N/A
4402.

Find the values of the following integrals (i) int_(0)^(pi/2) sin^(4) x cos^(4) x dx

Answer»


ANSWER :`(3PI)/(256)`
4403.

Let f : R to Rbe a continuous periodic function and T be the period of it. Then prove that for any positive integer n,int_(0)^(nT) f(x) dx=n int_(0)^(T) f(x) dx

Answer»


Answer :Thus, eq. (1) is true for any POSITIVE INTEGER n, by the principle of MATHEMATICAL INDUCTION.
4404.

A graph G has 'm' vertices of odd degree and 'n' vertices of even degree.Then which of the following statements is necessarily true?

Answer»

` m+ n` is an ODD number
` m+ n` is an EVEN number
`n+1` is an even number
` m+ 1` is an odd number

Answer :B
4405.

Construct a2xx2 matrix ,A=[a_(ij)], whose elements are given by : (i)a_(ij)=((i+j)^(2))/(2), (ii)a_(ij)=(i)/(j) (iii)a_(ij)=((i+2j)^(2))/(2)

Answer»


ANSWER :(i) `=[{:(2,(9)/(2)),((9)/(2),8):}]`
(ii) `=[{:(1,(1)/(2)),(2,1):}]`
(III) `=[{:((9)/(2),(25)/(2)),(8,18):}]`
4406.

If lim_(n rarr infty ) [(1+ 1/x^(2))(1+ 2^(2)/n^(2))...(1+n^(2)/n^(2))]^(1//n)=k, then log k =

Answer»

`LOG 4 + pi/2 -1`
`log 2 + pi/2 +1`
`log 2 + pi/2 -2`
`log 2 + pi/2 -1`

ANSWER :C
4407.

Regression equation of y on x and y be x + 2y - 5 = 0 and 2x + 3y - 8 = 0 respectively and the variance of x is 12. find the variance of y.

Answer»


ANSWER :4
4408.

Find the coefficient of 1/y^10 in the expansion of (y^3+a^7/y^5)^10

Answer»

SOLUTION :LET (R+1)th term contains `1/y^10`.
` THEREFORE (r+1)`term in the expansion of
`(y^3+a^7/y^5)^10` is `"^10C_r (y^3)^(10-r)(a^7/y^5)^r`
`"^10C_r y^(30-r) a^(7r) y^(-5R) = ^10C_r a^(7r) y^(30-8r)`
`therefore y^(30-8r) = 1/y^10 = y^-10` or , 30-8r = -10 or, 8r = 40 or, r = 5
The coefficient of `1/y^10` is `"^10C_5 a^(7xx5) = (10!)/(5!5!) a^35 = 252a^35`
4409.

Find the number of irrational terms in the expansion of (5^(1//6)+2^(1//8))^(100).

Answer»


ANSWER :97
4410.

In thermodynamic process pressure of a fixedmass of gas is changed in such a manner that the gas releases 30 joule of heat and 18 joule of work was done on the gas. If the initial internal energy of the gas was 60 joule, then, the final internal energy (in J) will be :

Answer»


SOLUTION :`dQ = dU + DW`
`-30 = -18 +U_(2) -60`
`U_(2) = 60-30+18 = 48`.
4411.

Approximately what percent of average annualGDP of Province P from 1996 - 2000 came from copper production?

Answer»

`3%`
`6%`
`9%`
`14%`

ANSWER :A
4412.

Find the most likely price in Mumbai (x) corresponding to the price of ₹ 70 at Kolkata (y) from the following data : {:(,"Mumbai", "Kolkata"),("Average price ",""67,""65),("Standard deviation ",""3 . 5 ,""2 . 5 ):} Correlation of coefficient = 0 . 5

Answer»


ANSWER :`28 . 5`
4413.

Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symmetric and a skew symmetric matrix.

Answer»


ANSWER :`=[{:(2,3,1),(1,1,2),(4,1,0):}]`
4414.

If f (x ) =x ^(2) + (x ^(2))/((1 + x ^(2))) + (x ^(2))/( (1 + x ^(2))) + …+ (x ^(2) ((1 + x ^(2)) + … then x =0

Answer»

`F (x)` has no LIMIT
`f (x)` is discotinous
`f (x)` is continous but not DIFFERENTIABLE
`f (x)` is differentiable

ANSWER :B
4415.

The probability distribution of a random variable X is given below: (i) Determine the value of k. (ii) Determine P(X le 2) and P(X gt 2) (ii) Find P(X le 2) +P(X gt 2).

Answer»


ANSWER :`(i) (8)/(15), (II) (1)/(15), (III) 1 `
4416.

Find adjoint of each of the matrices [{:(4,2),(1,5):}]

Answer»


ANSWER :`[{:(5,-2),(-1,4):}]`
4417.

The value of 2^(1/4), 4^(1/8), 8^(1/16) ...... infty is

Answer»

1
2
`3/2`
4

Answer :B
4418.

Three coins are tossed simultaneously. Consider the event E 'three heads or three tails'F 'at least two heads' and G 'at the most two heads'. Of the pairs (E, F), (E, G) and (F, G) (i) Which are independent?, "" (ii) Which are dependent?

Answer»


ANSWER :The events E and F are INDEPENDENT and the events (E and G) and (F and G) are DEPENDENT.
4419.

Twelve identical machines, running continuously at the same constant rate, take 8 days to complete a shipment. How many additional machines, each running at the same constant rate, would be needed to reduce the time required to complete a shipment by 2 days?

Answer»

2
3
4
6

Answer :C
4420.

Equation of the plane which bisects the line segment joining (-1,2,3) and (3,-5,6) perpendicularly, is

Answer»

4x+2y-3z=28
4x-7y-3z=28
4x-7y+3z=28
4x-7y-3z=8

Answer :C
4421.

If range of f(x) = (x^(2) - 3x + 2)/(x^(2) - ax+ 4) is R- (1) then sum of all possible real value(s) of 'a' is

Answer»

4
3
5
None of these

SOLUTION :`f(X) = ((x -1)(x -2))/(x^(2) - ax + 4)`
for range of `f(x)` to be R - {1}
`x^(2) - ax + 4 = (x - 1)^(2) or x^(2) - ax + 4 = (x - 2)^(2)`
not possible `""a = 4`.
4422.

If a, b,c gt 0& x,y,z in R" then the determinant"[{:(,(a^(2)+a^(-2))^(2),(a^(x)-a^(x))^(2),1),(,(b^(y)+b^(-y))^(2),(b^(y)-b^(y))^(2),1),(,(c^(x)+c^(-2))^(2),(c^(x)-c^(-z))^(2),1):}]=

Answer»

`a^(x)B^(y)C^(Z)`
`a^(-x)b^(-y)c^(-z)`
`a^(2x)b^(2Y)c^(2z)`
zero

Answer :D
4423.

Verify that A^(2)=I when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}].

Answer»


ANSWER :`=[{:(1,0,0),(0,1,0),(0,0,1):}]=I`
4424.

If ninN,"then "2.4^(2n+1)+3^(3n+1) is divisible by

Answer»

2
9
11
27

Answer :C
4425.

P is a point inside a Delta ABC, D, E, F are the feet or perpendicular from P to the line BC, AB respectively. Show that (BC)/(PD)+ (CA)/(PE) + (AB)/(PF) ge (2s ^(2))/(Delta). Prove that equality holds if P is its incentre, s = semipermeter, Delta = area of triangle.

Answer»


ANSWER :EQUALITY holds when `p = q=r=>P` is incentre of TRIANGLE.
4426.

A random variable x has the following probability distribution. Determine (i) k(ii) p(xlt3)

Answer»


ANSWER :`3/10`
4427.

If three unit vectors veca, vecb, vecc" satisfy "overset(-)a+overset(-)b+overset(-)c=overset(-)0, then the angle between overset(-)a and overset(-)b is

Answer»

`(2PI)/(3)`
`(5PI)/(6)`
`pi/3`
`pi/6`

ANSWER :A
4428.

Two forces F_(1)={2, 3} and F_(2)={4, 1} are specified relative to a general cartesian form. Their points of application are respectivel, A=(1, 1) and B=(2, 4). Find the coordinates of the resultantand the equation of the straight line l containing it.

Answer»


ANSWER :`{6, 4} and 4x-6y+13=0`
4429.

If the variance of the distribution is 45.8, then the variance of the distribution.

Answer»

93.6
`SQRT(93.9)`
183.2
`sqrt183.2`

ANSWER :C
4430.

Assertion (A) : If alpha, beta are the roots of ax^(2) + bx + c = 0 then the equation whose roots are(alpha-1)/(alpha), (beta-1)/(beta) is c(1-x)^(2)+ b(1-x)+a=0Reason (R): If alpha, beta are the roots of f(x) = 0then the equation whose roots are (alpha-1)/(alpha) and (beta-1)/(beta) is f((1)/(1-x))=0

Answer»

Both A, R are true and R EXPLAIN Assertion
Both A, R are true but R does't explain A
A is true R is FALSE
A is false R is true

Answer :A
4431.

If f : N to Z is defined by f(x)={{:("2 if "n = 3k", " k in Z),("10 if " n = 3k+1 " , "k in Z),("0 if " n = 3k +2", " k in Z):} then {n in N : f (n) gt 2) is equal to

Answer»

{3, 6, 4}
{1, 4, 7}
{4, 7}
{7}

ANSWER :B
4432.

Let f:R to R be a positive increasing function with underset(x to oo) (f(3x))/(f(x)=1

Answer»

1
`2//3`
`3//2`
3

Answer :A
4433.

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC

Answer»


ANSWER :RHS
4434.

If G is the centroid of the triangle PQR, where vec(GP)=2hat(i)+hat(j)+3hat(k),vec(GQ)=hat(i)-hat(j)+2hat(k), then the area of the triangle PQR is

Answer»

`SQRT(35)sq.units`
`(3sqrt(35))/(2)sq.units`
`sqrt(35)/(2)sq.units`
`(5sqrt(35))/(2)sq.units`

ANSWER :B
4435.

if f (x) =2 x +cot^(-1) x + en (sqrt(1+x^(2)) -x) the f(x):

Answer»

INCREASING in `[0,oo]`
decreasing in `[0,oo]`
NEITHER increases nordecreases in`[0,oo]`
increases in `[-oo,oo]`

ANSWER :A::D
4436.

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0, then alpha^(2)+beta^(2) is equal to

Answer»

`a^(2)+2B^(2)`
`a^(2)-2b^(2)`
`a^(2)-2b`
`a^(2)+2b`

ANSWER :B
4437.

The triangle formed by the tangent to the curve f(x)=x^2+bx-b at the point (1,1) and the coordinate axes, lies in the first quadrant , if its area is 2, then the value of b is :

Answer»

`-1`
`3`
`-3`
1

Answer :C
4438.

If D_1=|{:(1,yz,x),(1,zx,y),(1,xy,z):}|and D_2=|{:(1,1,1),(x,y,z),(x^2,y^2,z^2):}| then ,………

Answer»

`D_1+2D_2=0`
`2D_1+D_2=0`
`D_1+D_2=0`
`D_1=D_2`

ANSWER :C
4439.

If A = [(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and B = [(0,c,-b),(-c , 0,a),(b,-a,0)]then the product AB equals:

Answer»

I
O
A
B

ANSWER :B
4440.

int(dx)/(xsqrt(2ax-x^2))=

Answer»

`asqrt((2a-X)/(x))+C`
`(1)/(a)SQRT((2a-x)/(x))+c`
`-asqrt((2a-x)/(x))+c`
`(-1)/(a)sqrt((2a-x)/(x))+c`

ANSWER :D
4441.

In triangle ABC, AD is prependicular to BC and DE is perpendicular to AB

Answer»

`{:(a,b,c,d),(p,r,Q,q):}`
`{:(a,b,c,d),(q,r,p,s):}`
`{:(a,b,c,d),(s,p,q,r):}`
`{:(a,b,c,d),(r,p,s,q):}`

Solution :
a. Area of `DeltaADB = (1)/(2) AD XX BD`
`= (1)/(2) c sin B xx c COS B`
`= (c^(2))/(4) sin 2B`
b. Area of `DeltaADC = (1)/(2) AD xx CD`
`= (1)/(2) b sin C xx b cos C = (b^(2))/(4) sin 2C`
c. Area of `DELTAADE = (1)/(2) AE xx DE`
`= (1)/(2) AD cos ((pi)/(2) - B) AD sin ((pi)/(2) - B)`
`= (1)/(4) AD^(2) sin 2B`
`= (1)/(4) c^(2) sin^(2) B sin 2B`
d. Area of `DeltaBDE = (1)/(2) BE xx DE`
`= (1)/(2) BD cos B xx AD sin ((pi)/(2) -B)`
`= (1)/(2) c cos B cos B xx c sin B cos B`
`= (1)/(4) c^(2) cos^(2) B sin 2B`
4442.

In the group G={1,5,7,11} under multiplication modulo 12, the solution of 7^(-1)ox_(12)(x ox_(12)11)=5 is x =

Answer»

5
1
7
11

Answer :B
4443.

If alpha, beta are two different values of theta which satisfy is bc cos theta cos phi + ac sin theta sin phi=ab, then prove that (b^(2)+c^(2)-a^(2)) cos alpha cos beta+ ac sin alpha sin beta= a^(2)+b^(2)-c^(2).

Answer»


ANSWER :` (a^(2)+B^(2)-C^(2))=RHS`
4444.

1+(1)/(4) + (1.3)/(4.8) + (1.3.5)/(4.8.12)+…...=

Answer»

`SQRT2`
`(1)/(sqrt2)`
`SQRT3`
`(1)/(sqrt3)`

ANSWER :A
4445.

A = {x : x in R, |x| lt 1}, B = {x : x in R,| x - 1| ge 1} " and " A cup B = R - D " then " D =

Answer»

`{x :1 LT x le 2}`
`{x : 1 le x lt 2}`
`{x : 1 le x le 2}`
none

Answer :B
4446.

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b).

Answer»


ANSWER :6
4447.

Let f(x)=x^(3)-3x^(2)+6AA x in R " and "g(x)={{:(max.f(t), x+1 le t le x+2","-3 le x le 0),(1-x " for " x ge 0):} Then find y=g(x) " for " x in [-3, 1].

Answer»

Solution :`f(X)=x^(3)-3x^(2)+6`
If `f'(x)=3x^(2)-6x=0`, then `x=0, 2` are the critical points of `f(x)`.
`x=0` is the POINT of LOCAL MAXIMA and x=2 is the point of local minima.
Clearly, `f(x)` is increasing in `(-oo,0)` and `(2, oo)` and decreasingin (0,2).

Case 1 : ` x+2 le 0 rArr x le -2`
`rArr " " g(x)=f(x+2), -3 le x le -2`
Case2: `x+1 LT 0 ` and `0 lt x+2 lt 2`
`x lt -1 ` and `-2 lt x lt 0`
i.e., `-2 lt x lt -1 " " :. g(x)=f(0)`
Case 3: `0 le x+1, x+2 le 2`
`rArr -1 le x le 0, g(x)=f(x+1)`
`rArr g(x)={{:(f(x+2)", " -3 le x lt -2),(f(0)"," -2le x lt -1),(f(x+1)"," -1 le x lt 0),(1-x ","0 lexlt1):}`
4448.

Match the following colum -I with column - II.

Answer»

<P>`{:(P,Q,R,S),(2,3,4,1):}`
`{:(P,Q,R,S),(4,1,3,2):}`
`{:(P,Q,R,S),(1,4,2,3):}`
`{:(P,Q,R,S),(3,4,1,2):}`

ANSWER :D
4449.

Integrate the following rational functions : int(2x-1)/((x-1)(x+2)(x-3))dx

Answer»


Answer :`:. I=log|(sqrt(x-3))/((x-1)^((1)/(6))*(x+2)^((1)/(2)))|+C`
4450.

(a xx b) xx (c xx d) + (a xx c) xx (d xx b) + (a xx d) xx (b xx c) =

Answer»

[B C d]a
2 [b c d] a
`-[b c d] a`
`-2 [b c d] a`

ANSWER :D