Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

4901.

Match the following

Answer»

`{:(I,II,III,IV),(d, a, b, C):}`
`{:(I,II,III,IV),(a,b,c,d):}`
`{:(I,II,III,IV),(d,e,b,c):}`
`{:(I,II,III,IV),(d,a,e,c):}`

ANSWER :A
4902.

lim_(n rarr oo) [(1)/(1-n^(4))+(8)/(1-n^(4))+…...+(n^(3))/(1-n^(4))] equals :

Answer»

`(1)/(8)`
`-(1)/(4)`
`(1)/(4)`
None of these

Answer :B
4903.

Prove that 3 sin ^(-1) x = sin^(-1) (3x - 4x^3), x in [-1/2,1/2]

Answer»

Solution :Put `sin^(-1) x = y`. Then sin y = x
`therefore 3 x - 4 x^3 = 3 sin y - 4 sin^3 y = sin 3Y`
`implies 3y = sin^(-1) (3X - 4x^3)`
`implies 3 sin^(-1) x = sin^(-1) (3x - 4x^3)`
4904.

If A(veca).B(vecb) and C(vecc) are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point P(vecP) in the plane of the triangleABC such that vector vec(OP) is botto plane of trianglABC, show that vec(OP)=([vecavecbvecc] (vecaxxvecb+vecbxxvecc+veccxxveca))/(4Delta^(2))

Answer»

Solution :P LIES in the plane of A,B and C , therefore,
`vec(AP).(vec(Bp) xx vec(CP))=0`
`Rightarrow (vecp.veca).(veccxxvecp+vecpxxvecb+vecbxxvecc)=0`
`or 0 +0+vecp . (vecbxxvecc)-veca.(veccxxvecp)`
`-veca.(vecpxxvecb)-veca.(vecbxxvecc)=0`
`or vecp . (vecbxxvecc)=vecp.(veccxxveca) +vecp.(vecaxxvecb)`
`-veca . (VECB xx vecc) =0`
`or vecp.(vecbxxvecc+veccxxveca+vecaxxvecb) = [veca vecbvecc]`
now vector perependicular to the plane ABC is
`(vecb xx vecc +vecc xx veca +veca xxvecb)`
Let ` vec(OP) = LAMBDA(veca xx vecb + vecb +vecb xx vecc +vecc xx veca)`
since `vec(OP).(vecaxxvecb+vecbxxvecc+veccxxveca)=[veca vecbvecc]`
`or ([veca vecb vecc])/(4Delta^(2))`
`vec(OP) = ([veca vecb vecc] (veca xxvecb + vecb xxvecc +veccxxveca))/(4Delta^(2))`
4905.

Let DeltaABC be a given triangle, if |BA-tBC|ge|AC| for any t in R, then DeltaABC is

Answer»

Equilateral
Right angled
Isosceles
none of these

Answer :B
4906.

The maximum area of the rectangle that can be inscribed in a circle of radius r is

Answer»

is a SQUARE
is not a square
MAY or may not be a square
none

Answer :A
4907.

Evaluateunderset(n to oo)("lim")[(1+(1)/(n))(1+2/n)* * * (1+(n)/(n))]^(1/n)

Answer»


ANSWER :`(4)/(E)`
4908.

int_(0)^(2pi)(1)/(e^(sin x) +1) dx=

Answer»

`PI`
0
`2 pi`
`pi/2`

ANSWER :A
4909.

Using elementary row transformations , find the inverse of [{:(3,-1),(-4,2):}]

Answer»


ANSWER :`thereforeA^(-1)=[{:(1,(1)/(2)),(2,(3)/(2)):}]`
4910.

If (i)^(2) = -1, (i)^(2) + (i)^(4) + (i)^(6) + ...... to (2n + 1) terms =

Answer»

`-1`
1
0
2

Answer :A
4911.

If for somesx in Rthe frequency distribution of marks obtained by 20 students in a test is: Then the mean of the marks is:

Answer»

` 2.5`
`3.0`
` 2.8`
` 3.2`

ANSWER :C
4912.

Let P be a plane passing through the points (2,1,0),(4,1,1) and (5,0,1) and R be any point (2,1,6). Then the image of R is the plan P is :

Answer»

(6,5,2)
(6,5,-2)
(4,3,2)
(3,4,-2)

ANSWER :B
4913.

Let 0ltaltblt(pi)/(2).Iff(x)= |{:(tanx,tana, tanb),(sinx,sina,sinb),(cosx,cosa,cosb):}|,then find the minimum possible number of roots of f'(x) = 0 in (a,b).

Answer»


ANSWER :ONE ROOT
4914.

IF P (E ) =0.6 ,P( F) =0.3 and P (EnnF )=0.2 ,find P(F|E).

Answer»


ANSWER :`=1/3`
4915.

Integrate the function is exercise. sqrt(1+3x-x^(2))

Answer»


Answer :`(2x-3)/(2)sqrt(1+3x-x^(2))+(13)/(8)SIN^(-1)((2x-3)/(sqrt(13)))+c`
4916.

Lt_(n rarr oo)[(1+(1)/(n^(2)))^((2)/(n^(2)))(1+(2^(2))/(n^(2)))^((4)/(n^(2)))(1+(3^(2))/(n^(2)))^((6)/(n^(2))).....(1+(n^(2))/(n^(2)))^((2n)/(n^(2)))]

Answer»


ANSWER :`(4)/(E)`
4917.

Prove that[vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2).

Answer»


ANSWER : ` [VECA,VECB,VECC]^(2) ` .
4918.

the value of intlogx/xdx=

Answer»

`logx+C`
`INT(logx^2)/X +C`
`2logx+C`
`1/x+C`

ANSWER :B
4919.

If the mean and veriance of a binomial veriate X are 8 and 4 respectively , thenP(X lt3) equals to

Answer»

`(265)/(2^(15))`
`(137)/(2^(14))`
`(137)/(2^(16))`
`(265)/(2^(16))`

ANSWER :C
4920.

The vector equation of the plane which is at distance 8 units from origin and having normal 2hat i + hat j + 2 hat k is........

Answer»

`bar(r). (2 hat i + hat J + hat K) = 24`
`bar(r). (2 hat i + hat j + 2hat k) = 24`
`bar(r) . (2hat i + hat j + 2 hat k )=24`
`bar(r) . (hat i + hat j + hat k )=24`

Answer :B
4921.

Find the value of a ,b,c and d from the equation : [{:(a-b,2a+c),(2a-b,3c+d):}]=[{:(-1,5),(0,13):}].

Answer»


ANSWER :`d=4`
4922.

Is mn > -12? (1) m > -3 (2) n > -4

Answer»


ANSWER :E
4923.

If O be the origin and the coordinates of P be (1, 2, - 3), then find the equation of the plane passing through P and perpendicular to OP. The required plane is perpendicular to OP.

Answer»


ANSWER :`THEREFORE x+2y+3z-14=0`
4924.

When a 20 ml of 0.08 M weak base BOH is titrated with 0.08 M HCl, the pH of the solution at the end point is 5. What will be the pOH if 10 ml of 0.04M NaOH is added to the resulting solution?

Answer»

`5.40`
`5.88`
`4.92`
NOTA

Answer :B
4925.

Find the number of ways of arranging 8 persons around a circle if two particular persons wish to sit together.

Answer»


ANSWER :`6!2!`
4926.

Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

Answer»


ANSWER :H = 2R = DIAMETER of the BASE
4927.

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

Answer»

`PI`
`pi/4`
`pi/2`
`2PI`

ANSWER :B
4928.

find the value of cos^-1cos((7pi)/3)

Answer»

`(7 PI)/6`
`(5 pi)/6`
`pi/3`
`pi/6`

Answer :B
4929.

A man wants to reach a centain destination. One-sixth of the total distance is muddy while half the distance is tar road. For the remaining distance he takes aboat. His speed of traveling in mud, in water, on tar road is in the ratio3 : 4 : 5. The ratio ratio of the durations he requires to cross the patch of mud, stream and tar road is

Answer»

`1/2:4/3:5/2`
`3 : 8 : 15`
`10 : 15 : 18`
`1: 2 : 3`

SOLUTION :LET distance is 6 x
`{:(,,"mud",:,"tar",:,"stream"),("distance",,"x",:,"3X",:,"2x"),("speed",,"3v",:,"5V",:,"4v"),("time",,(x)/(3v),:,(3x)/(5v),:,(2x)/(4v)),(,,10,:,18,:,15):}`
4930.

If 3x +2y- 1 =0 is a tangent to a hyperbola (x^2)/(16) - (y^2)/(9)=1, then the point of contact is

Answer»

`(24, 9)`
`(-24, 9)`
`(48, -18)`
`(1,1)`

Answer :C
4931.

Find the mean deviation about the median for the data (i)Find median. (ii)Hence find mean deviation from the median.

Answer»


ANSWER :(i) `=30`
(II) `=5.1`
4932.

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,x-[x] x ne 1),(,0 x =1):}" at x =0"

Answer»


ANSWER :DISCONTINUOUS
4933.

The vertices of DeltaABC lie on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point (1, 1). The equation of the rectangular hyperbola is

Answer»

`xy=2x+y-2`
`2xy=x+2y+5`
`xy=x+y+1`
NONE of these

Solution :LET the equation of the HYPERBOLA be `xy-x-y+1+lambda=0`.
It PASSES through (3,2). Hence, `lambda=-2`.
So, the equation of hyperbola is
`xy=x+y+1`
4934.

The vertices of DeltaABC lie on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point (1, 1). The equation of the pair of asymptotes is

Answer»

`xy-1=x-y`
`xy+1=x+y`
`2xy=x+y`
NONE of these

Solution :Perpendicular TANGENTS intersect at the center of RECTANGULAR hyperbola. Hence, the center of the hyperbola is (1,1) and the equations of asymptotes are x - 1 = 0 and y - 1 = 0.
4935.

The vertices of DeltaABC lie on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point (1, 1). The number of real tangents that can be drawn from the point (1, 1) to the rectangular hyperbola is

Answer»

4
0
3
2

Solution :From the center of the HYPERBOLA, we can DRAW two real TANGENTS to the RECTANGULAR hyperbola.
4936.

The volume of the tetrahedron having the edges I + 2j + k, I + j + k, I - j + lambda K as coteninous is 2/3 cubic units. Then lambda =

Answer»

1
2
3
4

Answer :A
4937.

If a is positive integer then the number of values of 'a' satisfying int_(0)^(pi//2) {a^(2)((cos3x)/(4)+(3)/(4)cosx)+a sin x-20cosx} dx le (a^(2))/(3) are

Answer»

1
2
3
6

Answer :4
4938.

Find the derivative of the following functions with respect to x (sec x-1)/(sec x + 1)

Answer»


ANSWER :`"TAN"(X)/(2). "SEC"^(2) (x)/(2)`
4939.

Let xy - 2x - y + 2 = 0are the asymptotes of a hyperbola H, passing through (2, 10) . Statement -1 : The locus of the centroid of equilateral triangle inscribed in the hyperbola 'H' is a conic, whose length of latus rectum is 8. because Statement -2 : Centroidof all equilateral triangle inscribe in a hyperbola, lies on the hyperbola itself .

Answer»

Statement -1 is True,Statement -2 is True , Statement - 2 is a CORRECT EXPLANATION for Statement - 1
Statement -1 is True, Statement - 2 is True , Statement -2 is NOT a correct explanation for Statement - 1
Statement -1 True, Statement - 2 is False.
Statement -1 ,is False, Statement - 2 is True.

SOLUTION :N/A
4940.

Discuss the relative position of the fol- lowing pair of circles. (x-2)^(2) + (y+ 1) ^(2) = 9, (x+ 1) ^(2) + (y-3)^(2) + (y-3)^(2) = 4

Answer»


ANSWER :(i) TOUCH each other
(ii) Touch each other
(iii) CUT each other in TWO points.
4941.

The projection of the point (1, 3, 4) in the plane vecr.(2hati-hatj+hatk)=-3 is

Answer»

(1,3,4)
(1, 4,3)
(-1,4,3)
(-5, 4, 3)

ANSWER :C
4942.

Evalute the following integral int (sin (x + a))/(sin (x + b))dx

Answer»


Answer :XCOS (a -B ) + SIN (a - b) log| sin (X + b) | + c
4943.

If r, n in N r > 1, n > 2 and the coefficient of (r +2)th term and (3r)th term in the expansion of (1 +x)^(7n) are equal, then n equals

Answer»

3r
3r+1
2r
2r+1

Answer :C
4944.

Find which of the operations given above has identity. a"*"b=a^(2)+b^(2)

Answer»


SOLUTION :N/A
4945.

The solution of the equation(3|x| -3)^(2) =|x| +7 which belongs to the domain of definition of the function y= sqrt(x(x-3)) are given by

Answer»

`PM (1)/(9), pm 2`
`-(1)/(9), 2 `
`(1)/(9), -2`
`-(1)/(9) , -2`

ANSWER :d
4946.

|{:(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0):}|=".........."

Answer»


ANSWER :(z-x)(y-z)(y-x+xyz)
4947.

int (cos x - sin x )/(sqrt(8 - sin 2x )) dx =

Answer»

`sin^(-1) ((sin x + cos x)/(2) ) + c `
`sin^(-1) ((sin x + cos x)/(3)) + c `
`sin^(-1) ((sin x + cos x)/(4)) + c `
`sin^(-1) ` ( sin x + cos x ) + c

ANSWER :B
4948.

Find the number of element of P(P(phi))

Answer»

<P>

SOLUTION :We have `|P(PHI)|=2^@ =1`
`:.|P(P(phi))|=2^1=2`
4949.

The local maximum value of f(x)=x+(1)/(x) is ………….

Answer»

`(1)/(2)`
`-2`
`2`
`- (1)/(2)`

ANSWER :B
4950.

If the locus of the moving poin P(x,y) satisfying sqrt((x-1)^(2)+y^(2))+sqrt((x+1)^(2)+(y-sqrt(12))^(2))=a is an ellipse, then find the values of a.

Answer»


SOLUTION :We have `underset("distance between" P(X,y) and S (1,0))(sqrt((x-1)^(2)+y^(2)))+underset("distance between"P(x,y)and S' (-1sqrt(12)))sqrt((x+1)^(2)+(y-sqrt(12))^(2))=a`
`:. SP+S'P=a`
So, licus of P is ELLIPSE if
`agtSS'`
or `agtsqrt(4+12)`
or `agt4`