InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
After 17 years, Chelsea will be thrice as old as she is 5 years ago. Find her present age.1). 13 years2). 14 years3). 15 years4). 16 years |
|
Answer» Let her present age be ‘X’ YEARS Then, 5 years AGO her age was (X - 5) and after 17 years her age WOULD be (X + 17) ⇒ (X + 17) = 3(X - 5) ⇒ X + 17 = 3X - 15 ⇒ 2X = 17 + 15 = 32 ⇒ X = 16 ∴ Chelsea’s present age is 16 years |
|
| 2. |
II) y2 = 40961). if x > y2). if x ≥ y3). if x < y4). x ≤ y |
|
Answer» From the given data, ⇒ $(x = {\rm{\;}}\SURD 1225)$ = ±35 Also given that y2 = 4096 ⇒ y = √4096 = ± 64 When x = 35 and y = 64, then x < y x = 35 and y = - 64, then x > y x = - 35 and y = 64, then x < y x = - 35 and y = - 64, then x > y ∴ RELATIONSHIP cannot be determined |
|
| 3. |
II. b2 + 17b - 168 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 - 42a + 597 = 256 ⇒ a2 - 42a + 597 - 256 = 0 ⇒ a2 - 42a + 341 = 0 ⇒ a2 - 31a - 11a + 341 = 0 ⇒ a(a - 31) - 11(a - 31) = 0 ⇒ (a - 11)(a - 31) = 0 Then, a = +11 or a = +31 II. b2 + 17b - 168 = 0 ⇒ b2 + 24b - 7B - 168 = 0 ⇒ b(b + 24) - 7(b + 24) = 0 ⇒ (b - 7)(b + 24) = 0 Then, b = +7or b = -24 So, when a = +11, a > b for b = +7 and a > b for b = -24 And when a = +31, a > b for b = +7 and a > b for b = -24 ∴ So, we can OBSERVE that a > b. |
|
| 4. |
Shubhada is having total Rs. 300 in coin of denomination Rs. 1, Rs. 2, Rs. 5. No. of 2 Rs. Coin is three times the no. of 5 Rs. Coins. Total no. of coins is 160. How many coins of Rs. 5 are with Shubhada?1). 352). 253). 204). 40 |
|
Answer» Let the no. of Rs. 5 COINS be ‘x’ Let the No. of 1 Rs. COIN be ‘y’ No. of 2 Rs. Coin be ‘3x’ According to the question, x + 3x + y = 160---- (1) And, 5x + y + 6x = 300---- (2) By simultaneously solving equations (1) & (2), we get, x = 20, y = 80 ∴ Number of Rs. 1 = 80 coins, Rs. 5 coins = 20 coins, Rs. 2 coins = 60 |
|
| 5. |
1). x > y2). x < y3). x ≥ y4). x ≤ y |
|
Answer» I. x2 – 0.21x + 0.002 = 0 ⇒ x2 – 0.01x – 0.2x + 0.002 = 0 ⇒ x(x – 0.01) – 0.2(x – 0.01) = 0 ⇒ (x – 0.01) (x – 0.2) = 0 Thus, x = 0.01 or 0.2 II. y2 + 0.19y – 0.002 = 0 ⇒ y2 + 0.2y – 0.01y – 0.002 = 0 ⇒ y(y + 0.2) – 0.01(y + 0.2) = 0 ⇒ (y + 0.2) (y – 0.01) = 0 Thus, y = – 0.2 or 0.01 So, when x = 0.01, for y = – 0.2, then x > y and when x = 0.01, for y = 0.01, then x = y And when x = 0.2, for y = – 0.2, then x > y and when x = 0.2, for y = 0.01, then x > y ∴ We can observe that x ≥ y |
|
| 6. |
1). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» $(\begin{array}{l}{\RM{I}}.{\rm{\;}}\frac{{286{a^2}}}{{15}} - 30a =- {\rm{\;}}\frac{{14{a^2}}}{{15}} - 18 + 9A\\ \Rightarrow \frac{{286{a^2}}}{{15}} + \frac{{14{a^2}}}{{15}} - 30a - 9a + 18 = 0\end{array})$ ⇒ 20a2 - 39a + 18 = 0 ⇒ 4A(5a - 6) - 3(5a - 6) = 0 ⇒ (4a - 3)(5a - 6)=0 Then, a = +3/4 = + 0.75 or a = +6/5 = +1.2 $(\begin{array}{l}{\rm{II}}.{b^2} - {\rm{\;}}\frac{{158b}}{{63}} =- {\rm{\;}}\frac{{11}}{7}\\ \Rightarrow {b^2} - {\rm{\;}}\frac{{158b}}{{63}} =- {\rm{\;}}\frac{{99}}{{63}}\end{array})$ ⇒ 63b2 - 158b + 99 = 0 ⇒ 63b2 - 81b - 77b + 99 = 0 ⇒ 9b(7b - 9) - 11(7b - 9) = 0 ⇒ (9b - 11)(7b - 9) = 0 Then, b = + 11/9 = +1.222 or b = +9/7 = +1.286 So, when a = +0.75, a < b for b = +1.222 and a < b for b = +1.286 And when a = +1.2, a < b for b = +1.222 and a < b for b = +1.286 ∴ So, we can observe that a < b. |
|