Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

What is the zero of zero polynomial

Answer»

We know that The zero polynomial is the additive identity of the additive group of polynomials.

Zero of zero polynomial is not defined as the zero polynomial cannot have a variable

i.e 0 does not have a variable and equating it to zero will give no result.

52.

The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.1. In the standard form of quadratic polynomial, ax2 + bx + c, a, b and c area) All are real numbers.b) All are rational numbers.c) ‘a’ is a non zero real number and b and c are any real numbers.d) All are integers.2. If the roots of the quadratic polynomial are equal, where the discriminant D = b2 – 4ac, thena) D > 0b) D < 0c) Dd) D = 03. If α and \(\cfrac1\alpha\) are the zeroes of the quadratic polynomial 2x2 - x + 8k,  then k isa)  4b) \(\cfrac14\)c) \(\cfrac{-1}4\)d) 24. The graph of x2 + 1 = 0a) Intersects x‐axis at two distinct points.b)Touches x‐axis at a point.c) Neither touches nor intersects x ‐ axis.d)Either touches or intersects x ‐ axis.5. If the sum of the roots is –p and product of the roots is -\(\cfrac1p\), then the quadratic polynomial is

Answer»

1. c) ‘a’ is a non zero real number and b and c are any real numbers.

2. d) D = 0

3. b)

4. c) Neither touches nor intersects x‐axis.

5. c) k (x2 + px - \(\cfrac1p\))

53.

If the graph of a polynomial intersects the x -axis at only one point, can it be a quadratic polynomial?

Answer»

Yes, because every quadratic polynomial has at the most two zeros.

54.

Which of the following is not the graph of a quadratic polynomial?

Answer»

The shape of a quadratic polynomial is either upward or downward U - shaped curve i.e., an upward or downward parabola. Also, the graph of the quadratic equation cuts the X - axis at the most at two points, but in fig(D) it cuts the X - axis at three points.

∴ Fig (D) is not the graph of a quadratic polynomial.

55.

Is the following statement True or False? Justify your answer.If the graph of a polynomial intersects the x - axis at only one point it need not be a quadratic polynomial.

Answer»

If the graph of a polynomial intersects the x - axis at only one point it need not be a quadratic polynomial: True.

The quadratic polynomial cuts the x - axis at most at two points i.e. it can either touch x - axis at two points or one point or doesn’t touch the axis at all.

Hence the polynomial intersecting the x - axis at only one point need not be a quadratic polynomial.

56.

If one of the zeroes of a quadratic polynomial of the form x2 + ax + b is the negative of the other, then itA. has no linear term and the constant term is negative  B. has no linear term and the constant term is positive C. Can have a liner term but the constant term is negative D. Can have a linear term but the constant term is positive

Answer»

A. has no linear term and the constant term is negative

Let p(x) = x2 + ax + b

And let α be one of the zeroes

∴ - α is the other zero of the polynomial p(x)

Product of the zeroes = constant term ÷ coefficient of x2

Product of the zeroes = b

α(- α) = b

- α2 = b

i.e. b is negative.

Sum of the zeroes = - (coefficient of x) ÷ coefficient of x2

α - α = - a

0 = - a

⇒ a = 0

∴ The polynomials can be written as x2 - α2 (No linear term and negative constant term)

57.

Is the following statement True or False? Justify your answer.If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.

Answer»

If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign: False.

Let α, β be the zeroes of the polynomial p(x) = ax2 + bx + c

Sum of the zeroes = - (coefficient of x) ÷ coefficient of x2

α + β = - b/a > 0 (∵ α > 0, β > 0 ⇒ α + β > 0)

∴ for – b/a > 0, b and a must have opposite signs.

Product of the zeroes = constant term ÷ coefficient of x2

αβ = c/a > 0 (∵ α,β > 0⇒ αβ > 0)

∴ for c/a > 0, c and a must have same signs.

Case 1: when a > 0

⇒ - b > 0 and c > 0

= b < 0 and c > 0

Case 2: when a < 0

⇒ - b < 0 and c < 0

= b > 0 and c < 0

Hence, the coefficients have different signs.

58.

If 3 is a zero of the polynomial 2x2 + x + k, find the value of k.

Answer»

Given: 3 is one of zeroes of the polynomial 2x2 + x + k , which means x = 3 will satisfy it.

2x2 + x + k = 0

2(3)2 + 3 + k = 0

18 + 3+ k = 0

k = -21

The value of k is -21

59.

If one zeros of the quadratic polynomial kx2 + 3x + k is 2 then find the value of k.

Answer»

Given: 2 is one of zeroes of the polynomial kx2 + 3x + k , which means x = 2 will satisfy it.

k(2)2 + 3( 2) + k = 0

4k + 6 + k= 0

5k + 6 = 0

k = -6 / 5

The value of k is -6 / 5

60.

If 1 is a zero of the polynomial ax2 ‒ 3 (a ‒ 1) x ‒ 1 then find the value of a.

Answer»

Given: 1 is one of zeroes of the polynomial ax2 ‒ 3 (a ‒ 1) x ‒ 1 , which means x = 1 will satisfy it.

a(1)2 – 3(a – 1) x 1 – 1 = 0

a – 3a + 3 – 1 = 0

-2a + 2 = 0

a = 1

The value of a is 1.

61.

If the sum of the zeros of the quadratic polynomial kx2 -3x + 5 is 1 write the value of k..

Answer»

By using the relationship between the zeroes of the quadratic polynomial. 

We have 

Sum of zeroes = \(\frac{-(coefficient\,of\,x)}{(coefficient\,of\,x^2)}\)

⇒ 1 = \(\frac{-(-3)}k\)

⇒ k = 3

62.

Write the zeros of the polynomial x2 ‒ x ‒ 6.

Answer»

Let f(x) = x2 – x – 6

= x2 – 3x + 2x – 6

= x(x – 3) + 2(x – 3)

= (x – 3)(x + 2)

To find the zeros of f(x), let sat f(x) = 0, we get

(x – 3)(x + 2) = 0

Either x – 3 = 0 or x + 2 = 0

x = 3 or x = -2

Therefore, 3, -2 are zeros.

63.

If ‒2 is a zero of the polynomial 3x2 + 4x + 2k then find the value of k.

Answer»

Given: -2 is one of zeroes of the polynomial 3x2 + 4x + 2k , which means x = -2 will satisfy it.

3(-2)2 + 4(-2) + 2k = 0

12 – 8 + 2k = 0

4 + 2k=0

k = -2

The value of k is -2.

64.

If 1 is a zero of the quadratic polynomial ax2 – 3(a – 1)x – 1is 1, then find the value of a.

Answer»

Given: 

x = 1 is one zero of the polynomial ax2 – 3(a – 1) x – 1 

Therefore, 

it will satisfy the above polynomial. 

Now, we have 

a(1)2 – (a – 1)1 – 1 = 0 

⇒ a – 3a + 3 – 1 = 0 

⇒ –2a = – 2 

⇒ a = 1

65.

Write the zeros of the polynomial f(x) = x2 – x – 6.

Answer»

f(x) = x2 – x – 6 

= x2 – 3x + 2x – 6 

= x(x – 3) + 2(x – 3) 

= (x – 3) (x + 2) 

f(x) = 0 

⇒ (x – 3) (x + 2) = 0

⇒ (x – 3) = 0 or (x + 2) = 0 

⇒ x = 3 or x = –2 

So, 

the zeroes of f(x) are 3 and –2.

66.

Write the zeros of the polynomial `x^2-x-6`.

Answer» Correct Answer - `3 and -2`
`x^(2)-x-6 = x^(2) - 3x + 2x - 6 = x (x-3) + 2(x-3) = (x-3)(x+2).`
So, its zeros are 3 and -2.
67.

If - 4 is a zero of the polynomial x2 – x – (2k + 2) is –4, then find the value of k.

Answer»

Given: 

x = –4 is one zero of the polynomial x2 – x – (2k + 2) 

Therefore, 

it will satisfy the above polynomial. 

Now, we have 

(–4)2 – (–4) – (2k + 2) = 0 

⇒ 16 + 4 – 2k – 2 = 0 

⇒ 2k = – 18 

⇒ k = 9

68.

For what value of k, is – 2 a zero of the polynomial 3x2 + 4x + 2k?

Answer»

Given, Polynomial

3x2 + 4x + 2k

Zero of the polynomial = – 2

As we have zero,

f(x) = 3x2 + 4x + 2k = 0

By putting x = – 2

f(– 2) = 3(– 2)2 + 4 (– 2) + 2k = 0

f(– 2) = 12 – 8 + 2k = 0

= 4 + 2k = 0

= 2k = – 4

k = – 4/2 = – 2

So we have the value of k = – 2

69.

For what value of k, – 4 is a zero of the polynomial x2 – x – (2k + 2)?

Answer»

Given, A polynomial

x2 – x – (2k + 2)

– 4 is a zero of the given polynomial.

As – 4 is the zero,

so at x = -4,

the value of the polynomial

x2 – x – (2k + 2) will be 0.

So we get,

⇒x 2 – x – (2k + 2) = 0

⇒(– 4)2 – (– 4) – (2k + 2) = 0

⇒16 + 4 – (2k + 2) = 0

⇒20 – (2k + 2) = 0

⇒ – (2k + 2) = – 20

⇒2k + 2 = 20

⇒ 2k = 20 - 2

⇒2k = 18

⇒ k = 18/2 = 9

70.

If -2 is a zero of the polynomial `3x^(2)+4x+2k` then find the value of k.

Answer» Correct Answer - ` k =- 2 `
Since -2 is zero of `3x^(2) + 4x + 2k`, we have 12-8 + 2k = 0.
`:. 2k=- 4 rArr k =- 2.`
71.

If - 2 is a zero of the polynomial 3x2 + 4x + 2k then find the value of k.

Answer»

Given: 

x = –2 is one zero of the polynomial 3x2 + 4x + 2k 

Therefore, 

it will satisfy the above polynomial. 

Now, we have 

3(–2)2 + 4(–2)1 + 2k = 0 

⇒ 12 – 8 + 2k = 0 

⇒ k = – 2

72.

If 1 is a zero of the polynomial `ax^(2)-3(a-1)x-1`, then find the value of a.

Answer» Correct Answer - a = 1
Since 1 is a zero of `ax^(2) -3 (a-1) x -1`, we have ` a-3 (a-1) -1 = 0`.
`:. A -3a+3-1=0 rArr 2a = 2 rArr a = 1.`
73.

If one zero of ` 3x^(2) + 8x + k` be the reciprocal of the other then k = ?A. 3B. `-3`C. ` 1/3`D. `(-1)/3`

Answer» Correct Answer - A
` alpha beta = 1 rArr k/3 =1 rArr k = 3`.
74.

If 3 is a zero of the polynomial 2x2 + x + k, find the value of k.

Answer»

Given: 

x = 3 is one zero of the polynomial 2x2 + x + k 

Therefore, 

it will satisfy the above polynomial. 

Now, 

we have 2(3)2 + 3 + k = 0 

⇒ 21 + k = 0 

⇒ k = – 21

75.

If -4 is a zero of the polynomial `x^(2)-x-(2k+2)`, then find the value of k.

Answer» Correct Answer - k = 9
Since -4 is a zero of `x^(2)-x(2k+2)`, we have 16 + 4 - 2k - 2 = 0 .
`:. 2k= 18 rArr k = 9`.
76.

If one zero of 3x2 – 8x + k be the reciprocal of the other, then k = ? (a) 3 (b) -3(c) \(\frac{1}3\) (d) \(\frac{-1}3\)

Answer»

(a) k = 3 

Let α and \(\frac{1}α\) be the zeroes of 3x2 – 8x + k. 

Then the product of zeroes = \(\frac{k}3\)

⇒ α × \(\frac{1}α\) = \(\frac{k}3\)

⇒ 1 = \(\frac{k}3\)

⇒ k = 3

77.

If 3 is a zero of the polynomial `2x^(2)+x+k`, find the value of k.

Answer» Correct Answer - ` k = - 21`
Since 3 is a zero of `2x^(2) + x+k`, we have `18+3+k = 0 rArr k =- 21`.
78.

If one zero of the quadratic polynomial kx2 + 3x + k is 2, then find the value of k.

Answer»

Given: 

x = 2 is one zero of the quadratic polynomial kx2 + 3x + k 

Therefore, 

it will satisfy the above polynomial. 

Now, we have 

k(2)2 + 3(2) + k = 0 

⇒ 4k + 6 + k = 0 

⇒ 5k + 6 = 0

⇒ k = - \(\frac{6}5\)

79.

If - 2 and 3 are the zeroes of the quadratic polynomial x2 + (a + 1)x + b, then (a) a = -2, b = 6 (b) a = 2, b = -6 (c) a = -2, b = -6 (d) a = 2, b = 6

Answer»

(c) a = –2, b = –6 

Given: 

–2 and 3 are the zeroes of x2 + (a + 1) x + b. 

Now,

 (–2)2 + (a + 1) × (–2) + b = 0 

⇒ 4 – 2a – 2 + b = 0 

⇒ b – 2a = –2 ….(1) 

Also, 32 + (a + 1) × 3 + b = 0 

⇒ 9 + 3a + 3 + b = 0 

⇒ b + 3a = –12 ….(2)

On subtracting (1) from (2), 

we get a = –2 

∴ b = –2 – 4 = –6 [From (1)]

80.

If `alpha, beta`are the zeros of the polynomialsuch that `alpha+beta=-6`and `alphabeta=-4`, then write the polynomial.

Answer» Correct Answer - ` x^(2)-6x+4`
Required polynomial is `x^(2) - (alpha+beta) x + alpha beta = x^(2) - 6x + 4.`
81.

The value of (x – √3)(x + √3) = ……………….. A) x2 + 3 B) x2 – 3 C) x + 9 D) x – 9

Answer»

Correct option is (B) x2 – 3

\((x-\sqrt3)\,(x+\sqrt3)\) \(=x^2-(\sqrt3)^2\)

\(=x^2-3\)

Correct option is B) x2 – 3

82.

If one zero of the quadratic polynomial `(k-1) x^(2) + kx + 1" is " -4` then the value of k isA. ` (-5)/4`B. ` 5/4`C. ` (-4)/3`D. `4/3`

Answer» Correct Answer - B
x =- 4 satisfies `(k-1) x^(2) + kx +1 = 0.`
`:. 16(k-1) - 4k +1=0 rArr 12k = 15 rArr k = 5/4.`
83.

If one zero of the quadratic polynomial `kx^(2) + 3x+k` is 2 then the value of k isA. `5/6`B. ` (-5)/6`C. ` 6/5`D. `(-6)/5`

Answer» Correct Answer - D
x = 2 satisfies `ks^(2) + 3x + k = .`
`:. 4k+6+k = 0 rArr 5k =- 6 rArr k = (-6)/5.`
84.

If α and β are the two zeroes of a polynomial x2 – 5x + 6 then the value of 1/a2 + 1/β2 is ...............A) 13/36B) 17/36C) 19/36D) 23/36

Answer»

Correct option is (A) 13/36

\(\because\) \(\alpha+\beta\) \(=\frac{-(-5)}1\) = 5 and \(\alpha\beta\) \(=\frac61\) = 6

\(\therefore\) \(\frac{\alpha+\beta}{\alpha\beta}=\frac56\)

\(\Rightarrow\) \(\frac{1}{\alpha}+\frac{1}{\beta}\) \(=\frac56\)

\(\therefore\) \((\frac{1}{\alpha}+\frac{1}{\beta})^2\) \(=(\frac56)^2\)

\(\Rightarrow\) \(\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac2{\alpha\beta}\) \(=\frac{25}{36}\)

\(\Rightarrow\) \(\frac{1}{\alpha^2}+\frac{1}{\beta^2}\) \(=\frac{25}{36}-\frac2{\alpha\beta}\)

\(=\frac{25}{36}-\frac26\) \(=\frac{25-12}{36}=\frac{13}{36}\)

Correct option is A) 13/36

85.

If one zero of the quadratic polynomial `kx^(2) + 3x+k` is 2 then the value of k is

Answer» Correct Answer - ` k=(-6)/5`
Since 2 is a zero of `kx^(2) + 3x + k`, we have `4k+6+k = 0`.
`:. 5k=- 6 rArr k = (-6)/5.`
86.

If one zero of the quadratic polynomial (k – 1)x2 – kx + 1 is -4, then the value of k is(a) \(\frac{-5}4\) (b) \(\frac{5}4\) (c) \(\frac{-4}3\) (d) \(\frac{4}3\)

Answer»

Since –4 is a zero of (k – 1) x2 + kx + 1, 

we have: 

(k – 1) × (-4)2 + k × (-4) + 1 = 0 

⇒ 16k – 16 – 4k + 1 = 0 

⇒ 12k – 15 = 0

⇒ k = \(\frac{15}{12}\)

⇒ k = \(\frac{5}{4}\)

87.

Find the H.C.F. of the following :(i) x2 – 4 and x2 + 4x + 4(ii) 4x4 – 16x3 + 12x2 and 6x3 + 6x2 – 72x

Answer»

(i) x2 – 4 = (x + 2)(x – 2)

x2 + 4x + 4 = (x + 2)2

H.C.F. of coefficient = 1

H.C.F. of other factors = (x + 2)1 = x + 2

H.C.F. = x + 2

(ii) 4x4 – 16x3 + 12x2 = 4x2(x2 – 4x + 3) 

= 4x2(x – 1)(x – 3)

6x3 + 6x2 – 72x = 6x(x2 + x – 12) 

= 6x(x + 4)(x – 3)

= 2x(x – 3) [because H.C.F. of coefficients is 2]

= 2x2 – 6x

88.

If equation x2 + 3ax + k = 0 has x = -a as solution, then k will be(A) 2a2(B) 0(C) 2(D) -2a

Answer»

Answer is (A) 2a2

89.

To find roots of quadratic equation ax2 + bx + c = 0 write Shridhar Acharya formula.

Answer»

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

90.

Quadratic equation px2 + qx + r = 0, p ≠ 0 has equal roots if(A) p2 &lt; 4pr(B) p2 &gt; 4qr(C) q2 = 4pr(D) p2 = 4qr

Answer»

Answer is (C) q2 = 4pr

91.

Roots of the equation ax2 + bx + c = 0, a ≠ 0 will not be real if(A) b2 &lt; 4ac(B) b2 &gt; 4ac(C) b2 = 4ac(D) b = 4ac

Answer»

Answer is (A) b2 < 4ac

92.

For quadratic equation ax2 + bx + c = 0, a ≠ 0, at which nature of roots depends ?

Answer»

Discriminant (D) = b2 – 4ac

93.

If α, β are the zeroes of x2 + x + 1, then 1/α + 1/β = ……………A) 1 B) -1 C) 2 D) -2

Answer»

Correct option is (B) -1

Given that \(\alpha\;and\;\beta\) are zeros of \(x^2+x+1.\)

\(\therefore\) Sum of roots \(=\frac{\text{-coefficient of x}}{\text{coefficient of }x^2}=\frac{-1}1\) = -1

\(\Rightarrow\) \(\alpha+\beta\) = -1

And product of zeros \(=\frac{\text{constant term}}{\text{coefficient of }x^2}=\frac11\) = 1

\(\Rightarrow\) \(\alpha\beta=1\)

Now, \(\frac{\alpha+\beta}{\alpha\beta}=\frac{-1}1\) = -1

\(\Rightarrow\) \(\frac1\alpha+\frac1\beta\) = -1

Correct option is B) -1

94.

Describe nature of roots of quadratic equation ax2 + bx + c = 0, a ≠ 0

Answer»

(i) If (b2 – 4ac) > 0, then roots will be real and distinct.

(ii) If (b2 – 4ac) = 0, then roots will be equal and real.

(iii) If (b2 – 4ac) < 0, then roots will be imaginary.

95.

The zeros of the polynomial x2-2x -8 are(A) -4, 2(B) 4, 2(C) -4, -2(D) 4, -2

Answer»

Answer: (D) 4, -2

We have,
f(x) = x2-2x -8
Now, put f(x) = 0
x2-2x -8 = 0
x2- 4x + 2x -8 = 0
x(x - 4) + 2(x - 4) = 0

(x - 4) (x + 2) = 0
x - 4 = 0 or x + 2 = 0
x = 4 or x = -2
So, the zeros of given polynomial are 4 and -2.

96.

If the roots of x2 + 6x + 5 = 0 are α and β, then α + β = ……………….. A) 5 B) -6 C) 6D) -1

Answer»

Correct option is (B) -6

Given that roots of \(x^2+6x+5=0\) are \(\alpha\;and\;\beta.\)

\(\therefore\) Sum of roots \(=\frac{\text{-coefficient of x}}{\text{coefficient of }x^2}=\frac{-6}1\) = -6

\(\Rightarrow\) \(\alpha+\beta\) = -6

Correct option is B) -6

97.

The zeros of the polynomial x2+3x -10 are(A) 2, -5(B) -2, -5(C) 2, 5(D) -5, -2 

Answer»

Answer:(A) 2, -5

We have,
f(x) = x2 + 3x - 10
Now, put f(x) = 0
x2 + 3x - 10 = 0
x2 + 5x - 2x - 10 = 0
x(x + 5) - 2(x + 5) = 0
(x - 2) (x + 5) = 0
x - 2 = 0 or x + 5 = 0
x = 2 or x = -5
So, the zeros of given polynomial are 2 and -5.

98.

If the sum of two natural numbers is 8 and the product is 15, then find numbers.

Answer»

Let the first natural number be x.

Sum of two natural numbers is 8 then other natural numbers will be 8 – x.

According to question.

Product of both natural numbers = 15

⇒ x (8 – x) = 15

⇒ 8x – x2 = 15

⇒ x2 – 8x + 15 = 0

⇒ x2 – (5 + 3)x + 15 = 0

⇒ x2 – 5x – 3x + 15 = 0

⇒ (x2 – 5x) – (3x – 15) = 0

⇒ x (x – 5) – 3 (x – 5) = 0

⇒ (x – 5) (x – 3) = 0

⇒ x – 5 = 0 or x – 3 = 0

⇒ x = 5 or x = 3

Thus, if First natural no. = 5

then Second natural no. = 8

if First natural no. = 3

or Second natural no. = 8

99.

If ‘4’ is one of the zeroes of p(x) = x2 + kx – 8, then the value of k = ……………… A) 1 B) -1 C) 2 D) -2

Answer»

Correct option is (D) -2

p(4) = 0

\(\Rightarrow\) \(4^2+4k-8=0\)

\(\Rightarrow4k=8-4^2\) = 8 - 16 = -8

\(\Rightarrow\) \(k=\frac{-8}4=-2\)

Correct option is D) -2

100.

The zeros of the polynomial 4x2-4x -3 are(A) 3/2, 1/2(B) 2/3, 2(C) 3/2, -1/2(D) -3/2, -1/2

Answer»

Answer:(C) 3/2, -1/2

We have,
f(x) = 4x2 - 4x - 3
Now, put f(x) = 0
4x2 - 4x - 3 = 0
4x2 - 6x + 2x - 3 = 0
2x(2x - 3) + 1(2x - 3) = 0
(2x - 3) (2x + 1) = 0
2x - 3 = 0 or 2x + 1 = 0
2x = 3 or 2x = -1
x = 3/2 or x = -1/2 
So, the zeros of given polynomial are 3/2 and -1/2.