Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

If two zeroes of the polynomial x3 – 5x2 + 6x are 2 and 3, then the third zero is A) 0 B) 5 C) 6D) 1

Answer»

Correct option is (A) 0

Let the third zero be \(\alpha.\)

Sum of zeros \(=\frac{-b}a=\frac{-(-5)}1\) = 5

\(\therefore\) \(\alpha+2+3=5\)

\(\Rightarrow\) \(\alpha=5-5=0\)

Thus, the third zero be 0.

Correct option is A) 0

102.

Find the zeroes of the quadratic polynomial f(x) = 6x2 – 3.

Answer»

To find the zeroes of the quadratic polynomial we will equate f(x) to 0 

∴f(x) = 0 

⇒ 6x2 – 3 = 0 

⇒ 3(2x2 – 1) = 0 

⇒ 2x2 – 1 = 0 

⇒ 2x2 = 1 

⇒ x2\(\frac{1}2\)

⇒ x = ± \(\frac{1}{\sqrt2}\) 

Hence, 

the zeroes of the quadratic polynomial f(x) = 6x2 – 3 are \(\frac{1}{\sqrt2}\), - \(\frac{1}{\sqrt2}\)

103.

Which of the following is a polynomial? (A)\(\frac{x}{y}\) x/y (B) \(x^{\sqrt2}\) - \(3x\) x√2 - 3x(C) \(x^{-2} + 7\) x-2 + 7(D) \(\sqrt2x^{2} + \frac{1}{2}\) √2x2 + 1/2

Answer»

Correct option is (D) \(\sqrt2x^{2} + \frac{1}{2}\)

104.

The zeros of the polynomial 4x2-4x +1 are(A) 1/2, 1/2(B) -1/2, 3/2(C) -1/2, -1/2(D) 3/2, 1/2

Answer»

Answer:(A) 1/2, 1/2

We have,
f(x) = 4x2 - 4x + 1
Now, put f(x) = 0
4x2 - 4x + 1 = 0
4x2 - 2x - 2x + 1 = 0
2x(2x - 1) - 1(2x - 1) = 0
(2x - 1) (2x - 1) = 0
2x - 1 = 0 or 2x - 1 = 0
2x = 1 or 2x = 1
x = 1/2 or x = 1/2 
So, the zeros of given polynomial are 1/2 and 1/2.

105.

State division algorithm for polynomials.

Answer»

The polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree; it is a generalized version of the familiar arithmetic technique called long division.

It can be done manually because it separates a complex division problem into smaller ones.

Let’s take the Example:

f(x) and g(x) are two polynomials with,

g(x)≠0,

Now we can find the polynomials p(x) and q(x) such that,

f(x) = p(x) × g(x) × q(x)

Where q(x) = 0 or degree of q(x) < is degree of g(x).

The result is;

Dividend = Quotient × Divisor + Remainder

This is known as the Division Algorithm for polynomials.

106.

The zeros of the polynomial x2-√2x -12 are(A) √2, -√2(B) 3√2, -2√2(C) -3√2, 2√2(D) 3√2, 2√2 

Answer»

Answer:(B) 3√2, -2√2

We have,
f(x) = x2-√2x -12
Now, put f(x) = 0
x2-√2x –12 = 0
x2 - 3√2x + 2√2x – 12 = 0
x(x - 3√2) + 2√2(x - 3√2) = 0
(x - 3√2)(x + 2√2) = 0
x - 3√2 = 0 or x + 2√2 = 0
x = 3√2 or x = -2√2
So, the zeros of given polynomial are 3√2 and -2√2.

107.

State Division Algorithm for Polynomials.

Answer»

“If f(x) and g(x) are two polynomials such that degree of f(x) is greater than degree of g(x) where g(x) ≠ 0, there exists unique polynomials q(x) and r(x) such that 

f(x) = g(x) × q(x) + r(x),

where r(x) = 0 or degree of r(x) ˂ degree of g(x)

108.

Find the sum of the zeros and the product of zeros of a quadratic polynomial, are − 1/ 2 and -3 respectively. Write the polynomial.

Answer»

We can find the quadratic polynomial if we know the sum of the roots and product of the roots by using the formula 

x2 – (sum of the zeroes)x + product of zeroes 

⇒ x2 – (− 1/2 )x + (–3) 

⇒ x2 + 1/2x – 3 

Hence, the required polynomial is x2 + 1/2x – 3.

109.

Find the quadratic polynomial, the sum of whose zeros is `sqrt2` and their product is `-12`. Hence, find the zeros of the polynomial.

Answer» Let `alpha and beta` be the zeros of the required polynomial f(x).
Than, `(alpha+beta) = sqrt2 and alpha beta =- 12.`
`:. F(x) = x^(2) - (alpha+beta) x + alpha beta `
` = x^(2) - sqrt 2 x - 12.`
So, the required polynomial is `f(x) = x(2) - sqrt2 x - 12.`
Now, `f(x) = x^(2) - sqrt2 x - 12`
`= x^(2) - 3sqrt2 x + 2sqrt2 x - 12` [note it]
` = x(x-3sqrt2)+2sqrt2(x-3sqrt2)`
` = (x-3sqrt2)(x+2sqrt2).`
` :. f(x) = 0 rArr (x-3sqrt2)(x+2sqrt2) = 0`
` rArr x -3sqrt2 = 0 or x + 2 sqrt2 = 0`
` rArr x = 3 sqrt2 or x =- 2sqrt2.`
Hence, the required polynomial is ` f(x) = x^(2) - sqrt2x - 12` whose zeros are `3sqrt2 and -2sqrt2.`
110.

Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.

Answer» Correct Answer - `(x^(2)-1),{1,-1}`
111.

Find the quadratic polynomial, sum of whose zeros is 8 and their product is 12. Hence, find the zeros of the polynomial.

Answer» Correct Answer - `x^(2) - 8x+12,{6,2}`
112.

Sum of product of zeros of quadratic polynomial are 5 and 17 respectively. Find the polynomial.

Answer»

Given : Sum of zeros = 5 and product of zeros = 17

So, quadratic polynomial is given by

=> f(x) = k {x2 - x(sum of zeros) + product of zeros}

=> f(x) = k{x2 - 5x + 17}, where, k is any non-zero real number,

113.

Factorise (i) `x^(2)+9x+18` (ii) `6x^(2)+7x-3` `(iii) 2x^(2)-7x-15 (iv) 84-2r-2r^(2)`

Answer» (i) `x^(2)+9x+18=x^(2)+6x+3x+18` {by splitting middle term]
`=x(x+6)+3(x+6)=)x+3_(x+6)`
(ii) `6x^(2)+7x-3=6x^(2)+9x-2x-3` [by splitting middle term]
(iii) `2x^(2) -7x -15=2x^(2) -10x+3x-15` [by splitting middle term]
` =2x(x-5)+3(x-5)=(2x+3)(x-5)`
(iv) ` 84-2r-2r^(2)=-2(r^(2)+r-42)`
`=-(r^(2)+7r-6r-42)`
`=-2[r(r+7)-69r+7)]`
`=-2(r-6)(r+7)=2(6-r)(r+7)`
114.

Verify that `3, -1`and `-1/3`are the zeros of the cubicpolynomial `p(x)=3x^3-5x^2-11 x-3`andthen verify the relationship between the zeros and its coefficients.

Answer» The given polynomial is `p(x) = 3x^(3) - 5x^(2) = 11x - 3.`
`:. P(3) = {3 xx 3^(3) - 5 xx 3^(2) -11 xx 3- 3} = (81-45 - 33-3) = 0,`
`p(-1) ={3 xx (-1)^(3)-5xx(-1)^(2)-11 xx (-1)-3}`
` = (-3-5+11-3) = 0`,
` and p((-1)/3) = {3xx((-1)/3)^(3) - 5 xx ((-1)/3)^(2) - 11 xx ((-1)/3) - 3}`
` = {3 xx ((-1)/27) - 5 xx 1/9 + 11/3 - 3} = ((-1)/9-5/9+11/3-3)`
` = ((-1-5+33-27))/9 = 0.`
` :. 3,-1 and (-1)/3` are the zeros of p(x).
Let ` alpha =3, beta=-1 and gamma = 1/3.` Then,
`(alpha+beta+gamma) = (3-1-1/3) = 5/3 = (-("coefficient of " x^(2)))/(("coefficient of " x^(3))).,`
`(alpha beta+beta gamma+gamma alpha) = (-3+1/3-1) = (-11)/3 = (("coefficient of x"))/(("coefficient of " x^(3)))., `
`alpha beta gamma ={3xx(-1)xx((-1)/3)} = 1=3/3 = (-("constant term"))/(("coefficient of " x^(3))).`
115.

Find a quadratic polynomial whose zeros are 1 and `-3`. Verify the relation between the coefficients and zeros of the polynomial.

Answer» Let `alpha = 1 and beta =- 3.`
Sum of zeros = `(alpha+beta) = 1 +(-3)=-2.`
Product of zeros = `alpha beta = 1 xx (-3) =- 3.`
So, the required polynomial is
`x^(2)-(alpha+ beta) x+alpha beta = x^(2) -(-2) x+(-3)`
` = x^(2) + 2x -3.`
Sum of zeros `=-2=(-2)/1 =(-("coefficient of x"))/(("coefficient of " x^(2))),`
product of zeros `=- 3=(-3)/1 = ("constant term")/("coefficient of " x^(2)).`
116.

Find the zeros of the polynomial `f(x)=x^(2)-2` and verify the relationship between its zeros and coefficients.

Answer» We have
`f(x)= (x^(2)-2)={x^(2)-(sqrt2)^(2)} = (x+sqrt2)(x-sqrt2).`
` :. F(x) = 0 rArr (x+sqrt2)(x-sqrt2)= 0`
` rArr x +sqrt2 = 0 or x -sqrt2 = 0`
` rArr x =- sqrt2 or x = sqrt2.`
So, the zeros of f(x) are ` -sqrt2 and sqrt2.`
Sum of zeros = `(-sqrt2+sqrt2) =0 = 0/1 = (-"(coefficient of x)")/(("coefficient of " x^(2))), `
Product of zeros = `(-sqrt2) xx (sqrt2) = (-2)/1 = ("constant term")/("coefficient of " x^(2)).`
117.

Find the zeros of the polynomial `2x^(2)+5x-12` and verify the relationship between its zeros and coefficients.

Answer» Let the given polynomial be denoted by f(x). Then,
`f(x) = 2x^(2)+5x-12`
` = 2x^(2) + 8x - 3x - 12`
` =2x(x+4) - 3(x+4)`
` = (x+4)(2x-3)`.
`:. F(x) = 0 rArr (x+4)(2x-3) = 0`
` rArr x+4 = 0 or 2x - 3 = 0`
` rArr x =- 4 or x = 3/2.`
So, the zeros of f(x) are `-4 and 3/2.`
Sum of the zeros = `(-4+3/2)=(-5)/2 = (-("coefficient of x"))/(("coefficient of " x^(2))),`
product of the zeros = `(-4) xx 3/2 = (-12)/2 = ("constant term")/(("coefficient of " x^(2))).`
118.

Find the quadratic polynomial whose zeros are 2 and -6.verify the relation between the coefficients and the zeros of the polynomial.

Answer» Correct Answer - `x^(2)+4x-12`
119.

Find zeros of polynomial `x^2-5` and verify the relationship between zero and coefficients.

Answer» `x^2-5=0`
`x=pmsqrt5`
`x=sqrt5,-sqrt5`
`x^2+(alpha+beta)x+alphabeta=0`
`alpha+beta=sqrt5-sqrt5=0`
`alpha*beta=sqrt5*sqrt5=-5`
`x^2+0x+(-5)=0`
`x^2`+(sum of roots)x+(product of roots)=0.
120.

One of the zeroes of the polynomial ` 2x^(2)+7x-4` isA. 2B. `(1)/(2)`C. `-(1)/(2)`D. `-2`

Answer» Correct Answer - B
Let ` p(x) =2x^(2)+7x-4`
`=2x^(2)+8x-x-4`
`=2x(x+4)-1(x+4)`
`=(2x-1)(x+4)`
For zeroes Of `p(x)` . Put `p(x)=0`
`therefore " " (2x-1)(x+4)=0`
`implies 2x-1=0 and x+4=0`
`implies x=(1)/(2) and x=-4`
Hence , one of the zeroes of the polynomial `p(x) "is" (1)/(2)`
121.

Obtain all zeros of `(3x^4 -15x^3 + 13x^2 +25x -30)`, if two of its zeros are`sqrt(5/3) and - sqrt(5/3)`.

Answer» Here, `f(x) = 3x^4 - 15x^3+13x^2+25x - 30`
As, `sqrt(5/3) and -sqrt(5/3)` are two of the zeroes of the `f(x)`.
`:. (x - sqrt(5/3)) and (x+sqrt(5/3))` are the factors of `f(x)`.
`=>(x^2-5/3) ` is the factor of `f(x)`.
Now, we can write,
`3x^4 - 15x^3+13x^2+25x - 30 = 3x^2(x^2-5/3)-15x(x^2-5/3)+18(x^2-5/3)`
`= (x^2-5/3)(3x^2-15x+18)`
`= (3x^2-5)(x^2-5x+6)`
`= (3x^2-5)(x-2)(x-3)`
So, remaining zeroes of `f(x)` are `2` and `3`.
122.

If 9x^2 + 3px + 6q when divided by (3x + 1) leaves a remainder \(\big(-\frac{3}{4}\big)\) and qx2 + 4px + 7 is exactly divisible by (x + 1), then the values of p and q respectively will be : (a) 0, \(\frac{7}{4}\)(b) \(-\frac{7}{4}, 0\)(c) Same (d) \(\frac{7}{4}, 0\)

Answer»

 (d) \(\frac{7}{4}, 0\)

Given, (9x2 + 3px + 6q), when divided by (3x + 1) leaves a remainder \(-\frac{3}{4}\)

∴ f(x) = 9x2 + 3px + 6q – \(\big(-\frac{3}{4}\big)\) = \(\big(9x^2+3px+6q+\frac{3}{4}\big)\)

is exactly divisible by (3x + 1) 

∴ f\(\big(-\frac{3}{4}\big)\) = 0 ⇒ 9\(\big(-\frac{3}{4}\big)\)+ 3 p . \(\big(-\frac{3}{4}\big)\) + 6q + \(\frac{3}{4}\) = 0

⇒ 6q - p + \(\frac{7}{4}\) 0 

⇒ 24q - 4p + 7 = 0                      ......(i)

Now, the expression g(x) = qx2 + 4px + 7 is exactly divisible by x + 1 

⇒ g(–1) = 0 ⇒ q – 4p + 7 = 0                     ...(ii) 

Solving equations (i) and (ii), we get q = 0, p = \(\frac{7}{4}\).

123.

Find the zeroes of the polynomial: `6x^2-7x-3`

Answer» `f(x) = 6x^2-7x-3`
To find zeroes, we will make `f(x) = 0`
`:. 6x^2-7x-3 = 0`
`=>6x^2-9x+2x-3 = 0`
`=>3x(2x-3)+1(2x-3) = 0`
`=>(2x-3)(3x+1) = 0`
`=> x = 3/2 and x = -1/3`
`:. 3/2 and -1/3` are the zeroes of the given poynomial.
124.

FInd the condition that the zeroes of the polynomial `f(x) =x^3+3px^2+3qx+r` may be in A.P

Answer» Let `alpha-d,alpha and alpha+d` are the zeroes of the given polynomial.
Then, sum of zeroes ` = alpha-d+alpha+alpha+d = 3alpha`
`=> 3alpha = -3p => alpha = -p->(1)`
Product of zeroes taking two at a time ` = alpha(alpha-d)+ alpha(alpha+d)+(alpha-d)(alpha+d)`
`=alpha^2-alphad+alpha^2+alphad+alpha^2-d^2`
`=3alpha^2-d^2`
`=> 3alpha^2-d^2 = 3q->(2)`
Now, product of zeroes ` = alpha(alpha^2-d^2)`
`=> alpha(alpha^2-d^2) = -r `
`=>(alpha^2-d^2) = -r/alpha`
`=>(alpha^2-d^2) = (-r)/(-p)`
`=>(alpha^2-d^2) = (r)/(p)->(3)`
Now, from (2),
`2alpha^2+alpha^2-d^2 = 3q`
`=>2p^2+(r/p) = 3q`
`=>2p^3+r = 3pq`, which is the required condition.
125.

If `alpha and beta` are the zeros of the quadratic polynomial `f (x)= x^2-2x+3`, find a polynomial whose roots are (i) `alpha-2,beta-2` (ii) `(alpha-1)/(alpha+1),(beta-1)/(beta+1)`

Answer» 1)`x^2-2x+3`
`alpha+beta=2`
`alpha*beta=3`
`x^2-((alpha-2)(+(beta-2))x+(alpha-2)(beta-2)`
`alpha-2+beta-2=(alpha+beta-4)`
`(alpha-2)(beta-2)=alphabeta-2beta-2alpha+4`
`3-2(2)+4=3`
`x^2+2x+3=0`.
2)`(alpha-1)/(alpha+1)+(beta-1)/(beta+1)`
`=((alpha-1)(beta+1)+(beta-1)(alpha+1))/((alpha+1)beta+1)`
`=(2alphabeta-2)/(alphabeta+alpha+beta+1)`
`=(2*3-2)/(3+2+1)=4/6=2/3`
`=((alpha-1)/(alpha+1))((beta-1)/(beta+1))`
`=(alphabeta-beta-alpha+1)/(alphabeta+alpha+beta+1)`
`=(3-(2)+1)/(3+2+1)=2/6=1/3`
`=x^2-2/3x+1/3=0`
`3x^2-2x+1=0`.
126.

If the expression `ax^3+2x^2y-bxy^2-2y^3` is symmetric, then `(a,b)` =

Answer» `x=y`
`ax^3+2x^2y-bxy^2-2y^2=ay^3+2y^2x-byx^2-2x^3`
`ax^3+2x^2y-bxy^2-2y^3=-2x^3-bx^2y+2y^2x+ay^3`
`a=-2`
`b=-2`
`(a,b)=(-2,-2)`.
127.

The value(s) of m for which the expression `2x^2+mxy+3y^2-5y-2` can be factorized in to two linear factors are:

Answer» `3y^2+y(mx-5)+2x^2-2`
`a=3,b=mx-5,c=2x^2-2`
`b^2-4ac=(mx-5)^2-4*3(2x^2-2)`
`m^2x^2+25-10mn-24x^2+24`
`x^2(m^2-24)-10mx+49`
`(m^2-24)x^2-2*7(5mn)/7+7^2`
`(2*7(5m)/7)^2=4*(m^2-24)*7^2`
`25m^2=49m^2-49*24`
`m^2=49`
`m=pm7`.
128.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:p(x) = x2 + 2√2x – 6

Answer»

Given, 

p(x) = x2 + 2√2x – 6 

We put p(x) = 0 

⇒ x2 + 2√2x – 6 = 0 

⇒  x2 + 3√2x – √2x – 6 = 0 

⇒ x(x + 3√2) – √2 (x + 3√2) = 0 

⇒ (x – √2)(x + 3√2) = 0 

This gives us 2 zeros, for

x = √2 and x = -3√2 

Hence, the zeros of the quadratic equation are √2 and -3√2. 

Now, for verification 

Sum of zeros = \(\frac{– coefficient\, of\, x}{coefficient\, of\, x^2}\) 

√2 + (-3√2) = – \(\frac{(2\sqrt2)}{1}\) 

-2√2 = -2√2 

Product of roots = \(\frac{constant}{coefficient\, of\, x^2}\)

√2 x (-3√2) = \(\frac{(-6)}{ 2\sqrt2}\) 

-3 x 2 = -6/1

-6 = -6 

Therefore, the relationship between zeros and their coefficients is verified.

129.

If p(x)= x2 – 2√2x + 1, then p(2√2) is equal to(A) 0(B) 1(C) 4√2(D) 8√2 +1

Answer»

(B) 1

Explanation:

According to the question,

p(x) = x2 – 2√2x + 1

To get p(2√2),

We substitute x = 2√2,

p(2√2) = (2√2)2 – (2√2 × (2√2)) + 1

= (4 × 2) – (4 × 2) + 1

= 8 – 8 + 1

= 1

Hence, option B is the correct answer

130.

If length, breadth and height of the cuboid are (x – 1), (x – 10) and (x – 12) units, then volume of the cuboid in cubic units.A) x3 + 23x2 – 142x + 120 B) x3 – 23x2 + 142x – 120 C) x3 – 23x2 – 142x + 120 D) x3+ 23x2 – 142x – 120

Answer»

B) x3 – 23x2 + 142x – 120 

131.

Write the polynomial in ‘x’ whose zeroes are 1, 2 and – 1.

Answer»

The given zeroes of polynomials in ‘x’ are : 1, 2 and – 1. 

The factors of the polynomial are : x – 1, x – 2 and x + 1 

The required polynomial is : (x – 1) (x – 2) (x + 1) 

= (x2 – 1) (x – 2) = x3 – 2x2 – x + 2.

132.

If α, β be the zeroes of the polynomial 2x2 + 5x + k such that (α + β)2 – αβ = \(\frac{21}4\) , then k = ? (a) 3 (b) -3 (c) -2 (d) 2

Answer»

(d) 2 

Since α and β are the zeroes of 2x2 + 5x + k, 

we have:

α + β = \(\frac{-5}2\) and αβ = \(\frac{k}2\)

Also, it is given that α2 + β2 + αβ = \(\frac{21}4\)

⇒ (α + β)2 – αβ = \(\frac{21}4\)

⇒ \((\frac{-5}2)^2\) - \(\frac{k}2\) = \(\frac{21}4\)

⇒ \(\frac{25}4\)  - \(\frac{k}2\) = \(\frac{21}4\)

⇒ \(\frac{k}2\) = \(\frac{25}4\) - \(\frac{21}4\) = \(\frac{4}4\) = 1

⇒ k = 2

133.

If α, β, γ be the zeroes of the polynomial x3 – 6x2 – x + 30, then (αβ + βγ + γα) = ? (a) -1 (b) 1 (c) -5 (d) 30

Answer»

(a) -1 

It is given that α, β and γ are the zeroes of x3 – 6x2 – x + 30.

∴ (αβ + βγ + γα) = \(\frac{coefficient\,of\,x}{coefficient\,of\,x^3}\) = \(\frac{-1}1\) = - 1

134.

If α, β, γ are the zeroes of the polynomial p(x) = 6x3 + 3x2 – 5x + 1, find the value of\((\frac{1}{\alpha}+\frac1{\beta}+\frac1{\gamma})\).

Answer»

Given: 

p(x) = 6x3 + 3x2 – 5x + 1 

= 6x3 – (–3) x2 + (–5) x – 1 

Comparing the polynomial with x3 – x2 (α + β + γ) + x (αβ + βγ + γα) – αβγ, 

we get: 

αβ + βγ + γα = –5 

and αβγ = – 1

∴ \((\frac{1}{\alpha}+\frac1{\beta}+\frac1{\gamma})\)

\((\frac{\beta\gamma+\alpha\gamma+\alpha\beta}{\alpha\beta\gamma})\)

\((\frac{-5}{-1})\)

= 5

135.

If α, β, γ be the zeroes of the polynomial 2x3 + x2 – 13x + 6, then αβγ = ? (a) -3 (b) 3(c) \(\frac{-1}2\) (d) \(\frac{-13}2\)

Answer»

(a) –3 

Since, α, β and γ are the zeroes of 2x3 + x2 – 13x + 6, 

we have:

αβγ = \(\frac{-(constant\,term)}{coefficient\,of\,x^3}\) = \(\frac{-6}2\) = - 3

136.

If α, β, γ be the zeroes of the polynomial x3 – 6x2 – x + 3, then the values of (αβ + βγ + γα) = ? (a) -1 (b) 1 (c) -5 (d) 3

Answer»

(a) -1 

Here, 

p(x) = x3 – 6x2 – x + 3 

Comparing the given polynomial with x3 – (α + β + γ) x2 + (αβ + βγ + γα) x – αβγ, 

we get:

(αβ + βγ + γα) = -1

137.

Factorise : `(i) (x-y)^(3)+(y-z)^(3)+(z-x)^(3)` `(ii) (x-2y)^(3)+(2y-4z)^(3)+(4z-x)^(3)` `(iv) (3sqrt(2)a-5sqrt(3)b)^(3)+(5sqrt(3)b-7sqrt(5)c)^(3)+(7sqrt(5)c-3sqrt(2)a)^(3)`.

Answer» Correct Answer - `(i) 3(x-y)(y-z)(z-x) " " (ii) 3(x-2y)(2y-4z)4z-x) " " (iii) 3(5a-4b)(4b-3c)(3c-5a)`
`(iv) 3(3sqrt(2)a-5sqrt(3)b)(5sqrt(3)b-7sqrt(5)c)(7sqrt(5)c-3sqrt(2)a)`
138.

The zeros of the polynomial `4x^2+5sqrt(2)x-3` are :A. ` -3sqrt2, sqrt2`B. `-3sqrt2, sqrt2/2`C. ` (-3sqrt2)/2 sqrt2/4`D. none of these

Answer» Correct Answer - C
`4x^(2)+5sqrt2 x - 3 = 4x^(2) + 6sqrt2 x- sqrt2 x - 3`
` = 2sqrt2 x (sqrt2 x + 3)-(sqrt2 x + 3) = (sqrt2 x + 3) (2 sqrt2 x - 1).`
`:. X = (-3)/sqrt2 xxsqrt2/sqrt2 = (-3sqrt2)/2 or x = 1/(2sqrt2) xx sqrt2/sqrt2 = sqrt2/4.`
139.

(2x + 3y + 4z)2 = .................A) 4x2 + 9x2 + 16z2 + 12xy + 24yz + 16xz B) 2x2 + 34y2 + 4z2 + 6xy + 12yz + 8xzC) 4x2 + 9y2 + 16z2 D) 4x2 + 9y2 + 16z2 + xy + yz + zx

Answer»

Correct option is (A) \(4x^2+9y^2+16z^2+12xy+24yz+16xz\)

\((2x+3y+4z)^2\) \(=(2x)^2+(3y)^2+(4z)^2+2\times2x\times3y\) \(+2\times3y\times4z+2\times2x\times4z\)

\(=4x^2+9y^2+16z^2+12xy+24yz+16xz\)

A) 4x2 + 9x2 + 16z2 + 12xy + 24yz + 16xz 

140.

(t-1)(t-1) = ..................A) t2 + 1 B) t2 – 2t + 1 C) t2 + 2t + 1 D) t2 – 1

Answer»

Correct option is (B) t2 – 2t + 1

(t - 1)(t - 1) \(=t^2-t-t+1\)

\(t^2-2t+1\)

B) t2 – 2t + 1 

141.

3y2 + 2y – 5 A) (y – 1)(3y + 5) B) (y + 1) (3y – 5) C) (y – 1)(3y-5)D) (y + 1) (3y + 5)

Answer»

Correct option is (A) (y – 1)(3y + 5)

\(3y^2+2y-5\) \(=3y^2+5y-3y-5\)

= y(3y+5) - 1(3y+5)

\((y-1)(3y+5)\)

A) (y – 1)(3y + 5)

142.

(1 + x) (1 + x) = ...........A) 2 + 2x B) 1 + x2 C) 1 + x2 + 2x D) 1 + x + 2x2 

Answer»

Correct option is (C) 1 + x2 + 2x

\((1+x)\) \((1+x)\) \(=1+x+x+x^2\)

\(1+2x+x^2\)

C) 1 + x2 + 2x 

143.

Match the following group A to B. Choose correct mapping of the following Group – A — Group – B i) (a + b)2 – (a – b)2 — A) 2(a2 + b2 ) ii) (a + b)2 + (a – b)2 — B) 2ab iii) (a + b)2 – (a2 + b2 ) — C) 4ab Choose the correct answer : A) i – B, ii – C, iii – A B) i – C, ii – A, iii – B C) i – C, ii – B, iii – A D) i – A, ii – B iii – C

Answer»

B) i – C, ii – A, iii – B

144.

The value of p(x) = 4x3 + 3x2 + 2x + 1 at x = 1 is A) 9B) 10 C) 6 D) 7

Answer»

Correct option is (B) 10

\(\because\) \(p(x)=4x^3+3x^2+2x+1\)

\(\therefore\) \(p(1)=4.1^3+3.1^2+2.1+1\)

= 4+3+2+1 = 10

Correct option is  B) 10

145.

2x3 + 7x2 – 8 is a........A) monomial B) binomial C) trinomial D) zero

Answer»

Correct option is (C) trinomial

Polynomial \(2x^3+7x^2-8\) has 3 terms.

\(\therefore\) It is a trinomial.

Correct option is  C) trinomial

146.

A polynomial with two terms is called A) monomial B) binomial C) trinomial D) multinomial

Answer»

Correct option is (B) binomial

A polynomial with two term is called binomial.

Correct option is  B) binomial

147.

Assertion (A) : 6x5 + 5x4 + 3x2 + 4/x + 5 is a polynomial of degree 5.Reason (R) : Exponent of ‘x’ is negative integer, it is multinomial. A) Both A and R are true but ‘R’ is not correct explanation of A. B) A is correct, R is incorrect. C) A is incorrect, R is correct. D) Both A and R are true and ‘R’ is the correct explanation of A.

Answer»

B) A is correct, R is incorrect.

148.

The value of the polynomial `5x -4x^(2)+3,` when x=-1 isA. `-6`B. 6C. 2D. `-2`

Answer» Correct Answer - A
Let p(x) `=5x -4x^(2)+3`
On putting x=-1 in Eq (i) We get
`p(-1)=5(-1)-4(-1)^(2)+3=-5-4+3=-6`
149.

If x = 2, then the value of (x + 5) (x + 2) A) 40B) 28 C) 20 D) x2 + 7x + 10

Answer»

Correct option is (B) 28

\(\because\) \(x=2\)

\(\therefore\) \((x+5)\) \((x+2)\) = (2+5) (2+2)

\(=7\times4=28\)

Correct option is  B) 28

150.

Degree of the polynomial `4x^(4)+0x^(3) +0x^(5) +5x+7 ` isA. 4B. 5C. 3D. 7

Answer» Correct Answer - A
Degree of `4x^(4) +0x^(3)+0x^(5)+5x+7` is equal to the power of variable x.
Here , the highest of x is 4.
Hence , the degree of a polynomial is 4.