Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

if ` x^4 + 1/ x^4 = 322` then find the value of `x^3 - 1/x^3`

Answer» `x^4+1/x^4=322`
`x^4+1/x^4+2-2=322`
`(x^2+1/x^2)^2=324`
`x^2+1/x^2=18`
`x^2+1/x^2-2=16`
`(x-1/x)^2=16`
`x-1/x=4-(2)`
`x^2+1/x^2=18-(1)`
`(x^3-1/x^3)=(x-1/x)(x^2+1/x^2+x*1/x)`
`=4*(18+1)=4*19=76`.
202.

If `x=2` and `x=0` are roots ofthe polynomial `f(x)=2x^3-5x^2+ax+b`. Find the values of a and b

Answer» `f(x)=2x^3-5x^2+ax+b=0`
let x=0
`f(0)=0-0+0+b=0`
`b=0`
`f(2)=16-20+2a+b=0`
`2a+b=4`
`a=2`
203.

What is the coefficient form of x3 – 1? (A) (1, -1) (B) (3, -1) (C) (1, 0, 0, -1) (D) (1, 3, -1)

Answer»

(C) (1, 0, 0, -1)

x3 – 1 = x3 + 0x3 + 0x – 1

204.

Multiply the given polynomials.  2y +1; y2 – 2y + 3y

Answer»

(2y + 1) × (y2 – 2y 3+ 3y) 

= 2y(y2 – 2y3 + 3y) + 1(y2 – 2y3 + 3y) 

= 2y3 – 4y4 + 6y2 + y2 – 2y3 + 3y 

= -4y4 + 2y3 – 2y3 + 6y2 + y2 + 3y 

= -4y4 + 7y2+ 3y

205.

Write the following polynomials in standard form.i. m3 + 3 + 5m ii. – 7y + y5 + 3y3 – \(\frac1{2}\)+ 2y4 – y2

Answer»

i. m3 + 5m + 3

 ii. y5 + 2y4 + 3y3– y2– 7y- \(\frac1{2}\)

206.

For each of the following polynomial, find p(1), p(0) and p(- 2). i. p(x) = x3ii. p(y) = y2 – 2y + 5 iii. p(y) = x4 – 2x2 + x

Answer»

i. p(x) = x3 

∴ p(1) = 13 = 1 

p(x) = x3 

∴ p(0) = 03 = 0 

p(x) = x3 

∴ p(- 2) = (- 2)3 = - 8 

ii. p(y) = y2 – 2y + 5 

∴ p(1) = 12 – 2(1) + 5 

= 1 – 2 + 5 

∴ P(1) = 4 

p(y) = y2 – 2y + 5 

∴ p(0) = 02 – 2(0) + 5 

= 0 – 0 + 5 

∴ p(0) = 5

p(y) = y2 – 2y + 5 

∴ p(- 2) = (- 2)2 – 2(- 2) + 5 

= 4 + 4 + 5 

∴ p(- 2) = 13 

iii. p(x) = x4 – 2x2 – x 

∴ p(1) = (1)4 – 2(1)2 – 1 

= 1 – 2 – 1 

∴ p(1) = - 2 

∴ p(x) = x4 – 2x2 – x 

∴ p(0) = (0)4 – 2(0)2 – 0 

= 0 – 0 – 0 

∴ p(0) = 0 

p(x) = x4 – 2x2 – x 

∴ p(-2) = (-2)– 2(-2)2 – (-2) 

= 16 – 2(4) + 2 

= 16 – 8 + 2 

∴ p(-2) = 10

207.

Write the polynomial in x using the given information. i. Monomial with degree ii. Binomial with degree 35 iii. Trinomial with degree 8

Answer»

i. 5x7 

ii. x35 – 1 

iii. 3x8 + 2x6 + x5

208.

Expression (x – 3) will be a factor of polynomial f(x) = x3 + x2 – 17x + 15 if:(A) f(3) = 0(B) f(-3) = 0(C) f(2) = 0(D) f(-2) = 0

Answer»

Answer is (A) f(3) = 0

f(x) = x3 + x2 – 17x + 15

f(3) = (3)3 + (3)2 – 17(3) + 15 

= 27 + 9 – 51 + 15 = 0

f(3) = 0

209.

What is the degree of the polynomial? (A) 0 (B) 1 (C) undefined (D) any real number

Answer»

(C) undefined

210.

What is the degree of the polynomial √7? (A) (1/2)(B) 5 (C) 2 (D) 0

Answer»

(D) the degree of the polynomial √7 is 0

211.

If ` f(x) = x^4 - 2 x^3 + 3 x^2 -ax +b` is a polynomial such that when it is divided by x-1 and x+1 the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by x-2.

Answer» `f(x)=x^4-2x^3+3x^2-ax+b`
`f(1)=1-2(1)+3(1)-a+b`
`b-a=3-(1)`
`f(-1)=1-2(-1)+3(1)-a(-1)+b``19=1+2+3+a+b`
`a+b=13-(2)`
adding equation 1 and 2
`2b=16`
`b=8`
`a=8-3=5`
f(2)=16-2*8+3*4-5*2+8
=16-16+12-10+8=10.
212.

If `p(x)^(4)-2x^(3)+3x^(2)-ax+b` be a polynomial such that when it is divided by x-1 and x+1, remainders are respectively 5 and 19. Determine the remiander when p(x) is divided by x-2.

Answer» It is given that, `p(1)=5 " " "and" p(-1)=19`
`{:(rArr (1)^(4) -2(1)^(3)+3(1)^(2) -a(1)+b=5,|,"Also," (-1)^(4)-2(-1)^(3)+3(-1)^(2)-a(-1)+b=19),(rArr" " 1-2+3-a+b=5,rArr 1+2+3+a+b=19,),(rArr " " -a+b=3......(1),rArr " " a+b=13....(2),):|`
Adding (1) and (2), we get,
`2b=16 implies b=8`
Putting this value of b in (2), we get
a=5
`therefore p(x)=x^(4)-2x^(3)+3x^(2)-5x+8`
`therefore p(2)=(2)^(4)-2(2)^(3)+3(2)^(2)-5(2)+8=10`
So, remainder =10, when p (x) is divided by (x-2)
213.

When a polynomial f(x) is divided by (x – 3) and (x + 6), the respective remainders are 7 and 22. What is the remainder when f(x) is divided by (x – 3) (x + 6) ? (a) \(\frac{-5}{3}x+12\)(b) \(-\frac{7}{3}x+14\)(c) \(-\frac{5}{3}x+16\)(d) \(-\frac{7}{3}x+12\)

Answer»

(a) \(\frac{-5}{3}x+12\)

The function f(x) is not known. Here, 

a = 3, b = – 6 

A = 7, B = 22                  [Refer to Key Fact 8] 

∴ Required remainder = \(\frac{A-B}{a-b}x+\frac{Ba-Ab}{a-b}\)

\(\frac{7-22}{3-(-6)}x+\frac{22\times3-7\times(-6)}{3-(-6)}\) = \(\frac{-5}{3}x+12.\)

214.

Write the following polynomial in coefficient form. i. x4 + 16 ii. m5 + 2m2 + 3m + 15

Answer»

i. x4 + 16 

Index form = x4 + 0x3 + 0x2 + 0x + 16 

∴ Coefficient form of the polynomial = (1,0,0,0,16) 

ii. m5 + 2m2 + 3m + 15 

Index form = m5 + 0m4 + 0m3 + 2m2 + 3m + 15 

∴ Coefficient form of the polynomial = (1, 0, 0, 2, 3, 15)

215.

Write the degree of the given polynomials. i. √5 ii. x° iii. x2iv. √2m10 – 7v. 2p – √7 vi. 7y – y3 + y5 vii. xyz + xy - z viii. m3n7– 3m5 n + mn

Answer»

i. √5 = √5 x° 

∴ Degree of the polynomial = 0 

ii. x° 

∴ Degree of the polynomial = 0 

iii. x2

∴ Degree of the polynomial = 2 

iv. √2m10 – 7 

Here, the highest power of m is 10. 

∴ Degree of the polynomial = 10 

v. 2p – √7 

Here, the highest power of p is 1. 

∴ Degree of the polynomial = 1

vi. 7y – y3 + y5 

Here, the highest power of y is 5. 

∴ Degree of the polynomial = 5 

vii. xyz + xy – z 

Here, the sum of the powers of x, y and z in the term xyz is 1 + 1 + 1 = 3, which is the highest sum of powers in the given polynomial. 

∴ Degree of the polynomial = 3 

viii. m3n7 – 3m5n + mn 

Here, the sum of the powers of m and n in the term m3 n7 is 3 + 7 = 10, which is the highest sum of powers in the given polynomial. 

∴ Degree of the polynomial = 10

216.

Write the correct alternative answer to the following question.Which of the following is a polynomial?(A) x/y(B) x√2 - 3x(C) x-2 + 7(D) √2x2 + (1/2) 

Answer»

(D) √2x2 + (1/2)

217.

Show that (x-3) is a factor of the polynomial `x^(3)+x^(2)-17x+15`.

Answer» Let x-3=0
`implies x=3`
Let `p(x)=x^(3)+x^(2)-17x+15`
`implies p(3)=3^(3)+3^(2) -17(3)+15=27+9-51+15=0`
`because` The remainder is zero when putting x=3.
`therefore` x-3 is a factor of given polynomial.
218.

If (x – 2) is a factor of x3– mx2 + 10x – 20, then find the value of .

Answer»

p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + 10x – 20.

∴By factor theorem,

Remainder = p(2) = 0

 p(x) = x3 – mx2 + 10x – 20 

∴ p(2) = (2)3– m(2)2 + 10(2) – 20 

∴ 0 = 8 – 4m + 20 – 20 

∴ 0 = 8 – 4m 

∴ 4m = 8 

∴ m = 2

219.

If x – 2 and x – \(\frac1{2}\)both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.

Answer»

p(x) = nx2 – 5x + m 

(x – 2) is a factor of nx2 – 5x + m. 

∴ By factor theorem, 

P(2) = 0 

∴ p(x) = nx2 – 5x + m 

∴ p(2) = n(2)2– 5(2) + m 

∴ 0 = n(4) – 10 + m 

∴ 4n – 10 + m = 0 …(i) 

Also, ( x = \(\frac1{2} \)) is a factor of nx2 – 5x + m.

∴ By factor theorem,

p( \(\frac1{2} \)) = 0 

p(x) = nx2– 5x + m 

∴ p(\(\frac1{2} \) ) = n(\(\frac1{2} \))2 – 5\(\frac1{2} \) + m 

0 = \(\frac{n}{4} \)\(\frac{5}{2} \) + m 

∴ 0 = n- 10 +4m … [Multiplying both sides by 4] 

∴ n = 10 – 4m ……(ii)

 Substituting n = 10 – 4m in equation (i)

 4(10 – 4m) – 10 + m = 0 

∴ 40 – 16m – 10 + m = 0 

∴ -15m+ 30 = 0 

∴ -15m = -30 

∴ m = 2 Substituting m = 2 in equation (ii)

n = 10 – 4(2)

 = 10 – 8 

∴ n = 2 

∴ m = n = 2

220.

Subtract the second polynomial from the first. i. 5x2 – 2y + 9 ; 3X2 + 5y – 7 ii. 2x2 + 3x + 5 ; x2 – 2x + 3

Answer»

i. (5x2– 2y + 9) – (3x2+ 5y – 7) 

= 5x2 – 2y+ 9 – 3x2 – 5y + 1 

= 5x2 – 3x2 – 2y – 5y + 9 + 7 

= 2x2 – 1y + 16 

ii. (2x2 + 3x + 5) – (x2 – 2x + 3)

 = 2x2 + 3x + 5 – x2 + 2x – 3 

= 2x2 – x2 + 3x + 2x + 5 – 3 

= x2+ 5x + 2

221.

Write the degree of the polynomial for each of the following. i. 5 + 3x4 ii. 7 iii. ax7 + bx9 (a, b are constants)

Answer»

i. 5 + 3x4 

Here, the highest power of x is 4. 

∴ Degree of the polynomial = 4 

ii. 7 = 7x° 

∴ Degree of the polynomial = 0 

iii. ax7 + bx9 

Here, the highest power of x is 9. 

∴ Degree of the polynomial = 9

222.

Let R1 and R2 be the remainders when the polynomials x3 + 2x2 – 5ax – 7 and x2 + ax2 – 12x + 6 are divided by (x + 1) and (x – 2) respectively. If 2R1 + R2 = 6, the value of a is :(a) –2 (b) 1 (c) –1 (d) 2

Answer»

(d) 2

Let f(x) = x3 + 2x2 – 5ax – 7

∴ R1 = f(–1) = (–1)3 + 2. (–1)2 – 5.a. (–1) –7 

= –1 + 2 + 5a –7 = 5a – 6 

g(x) = x3 + ax2 – 12x + 6 

R2 = g(2) = (2)3 + a.(2)2 – 12.(2) + 6 

= 8 + 4a – 24 + 6 = 4a – 10 

Given, 2R1 + R2 = 6 ⇒ 2(5a – 6) + (4a – 10) = 6 

⇒ 10a – 12 + 4a – 10 = 6 

⇒ 14a – 22 = 6 ⇒ 14a = 28 ⇒ a = 2.

223.

Subtract the second polynomial from the first. i. x2 – 9x + √3; – 19x + √3 + 7x2 ii. 2ab2 + 3a2b – 4ab; 3ab – 8ab2 + 2a2b

Answer»

i. x2 – 9x + √3 -(- 19x + √3 + 7x2

= x2 – 9x + √3 + 19x – √ 3 – 7x2 

= x2 – 7x– 9x + 19x + √3 – √3 

= – 6x2 + 10x 

ii. (2ab2 + 3a2b – 4ab) – (3ab – 8ab2 + 2a2b) 

= 2ab2 + 3a2b – 4ab – 3ab + 8ab2 – 2a2b

= 2ab2 + 8ab2 + 3a2b – 2a2b – 4ab – 3ab 

= 10ab2 + a2b – 7ab

224.

Classify the following polynomials as linear, quadratic and cubic polynomial. i. 2x2 + 3x + 1 ii. 5p iii. √2 – (1/2)iv. m3 + 7m2 + \(\sqrt[5]{2}\)m – √7 v. a2 vi. 3r3

Answer»

Linear polynomials: ii, iii 

Quadratic polynomials: i, v 

Cubic polynomials: iv, vi

225.

Which is the following is a linear polynomial? (A) x + 5 (B) x2 + 5 (C) x3 + 5 (D) x4 + 5

Answer»

(A) a linear polynomials is x + 5

226.

Which polynomial is to be subtracted from x2 + 13x + 7 to get the polynomial 3x2 + 5x – 4?

Answer»

Let the required polynomial be A. 

∴ (x2 + 13x + 7) – A = 3x2 + 5x – 4 

∴ A = (x2 + 13x + 7) – (3x2 + 5x – 4) 

= x2 + 13x + 7 – 3x2 – 5x + 4 

= x2 – 3x2 + 13x – 5x + 7+4 

= -2x2+ 8x + 11 

∴ – 2x2 + 8x + 11 must be subtracted from x2 + 13x + 7 to get 3x2 + 5x – 4

227.

Add the given polynomials. i. x3 – 2x2 – 9; 5x3 + 2x + 9 ii. -7m4 + 5m3 + √2; 5m4 – 3m3 + 2m2 + 3m – 6 iii. 2y2 + 7y + 5; 3y + 9; 3y2 – 4y – 3

Answer»

i. (x3 – 2x2 – 9) + (5x3 + 2x + 9) 

= x3 – 2x2 – 9 + 5x3 + 2x + 9 

= x3 + 5x3 – 2x2 + 2x – 9 + 9 

= 6x3 – 2x2 + 2x

ii. (-7m4 + 5m3 + √2 ) + (5m4 – 3m3 + 2m2 + 3m – 6) 

= -7m4 + 5m3 + √2 + 5m4 – 3m3 + 2m2 + 3m – 6 

= -7m4 + 5m4 + 5m3 – 3m3 + 2m2 + 3m +√2 – 6 

= -2m4 + 2m3 + 2m2 + 3m + √2 – 6

iii. (2y2 + 7y + 5) + (3y + 9) + (3y2 – 4y – 3) 

= 2y2 + 7y + 5 + 3y + 9 + 3y2 – 4y – 3 

= 2y2 + 3y2 + 7y + 3y – 4y + 5 + 9 – 3 

= 5y2 + 6y + 11

228.

Write the following polynomials in coefficient form. i. x3 – 2 ii. 5y iii. 2m4 – 3m2 + 7 iv. - (2/3)

Answer»

i. x3 – 2 = x3 + 0x2 + 0x – 2 

∴ Coefficient form of the given polynomial = (1, 0, 0, -2) 

ii. 5y = 5y + 0 

∴ Coefficient form of the given polynomial = (5,0)

iii. 2m4 – 3m2 + 7 

= 2m4 + 0m3 – 3m2 + 0m + 7 

∴ Coefficient form of the given polynomial = (2, 0, -3, 0, 7) 

iv. – (2/3)

∴Coefficient form of the given polynomial = - (2/3)

229.

Write the following polynomials in standard form. i. m3 + 3 + 5m ii. –7y + y5 + 3y3 – (1/2) + 2y4 - y2

Answer»

i. m3 + 5m + 3 

ii. y5 + 2y4 + 3y3 – y2 – 7y – (1/2)

230.

If the polynomial `ax^(3)+3x^(2)-3` leaves the remainder 6 when divided by x-4, then find the value of a.

Answer» Let x-4=0
`implies x=4`
Let `p(x)=ax^(3)+3x^(2)-3`
Given that p(4)=6
`implies a(4)^(3)+3(4)^(2)-3=6`
`implies 64a+48-3=6`
`implies 64a=6+3-48=-39`
`implies a=(-39)/(64)`
231.

the polynomial `p(x)=x^(4)-2x^(3)+3x^(2)-ax+3a -7` when divided by x+1 leaves the remainder 19. find the values of A , also find the remainder when p(x) is divided by x+2.

Answer» Given `p(x)=x^(4)-2x^(3)+3x^(2)-ax+3a-7`
when we divide p(x) by x+1 ,then we get the the reamainder p(-1)
Now , `P(-1)=(-1)^(4)-2(-1)^(3)+3(-1)^(3)+3(-1)^(2)-a(-1)+3a-7`
`=1+2+3+a+3a-7=4a-1`
According to the question `p(-1) =19`
`implies 4a-1=19`
`implies 4a-1=19`
` implies 4a=20`
`therefore a=5`
`therefore ` Required polynomial `=x^(4)-2x^(3)+3x^(2)-5x+3(5)-7`
`=x^(4) -2x^(3) +3x^(2)-5x+15-7`
`=x^(4)-2x^(3) +3x^(2)-5x+8`
when we divide `p(x) ` by x+2 then we get the remainder p(-2),
Now , `P(-2)=(-2)^(4)-2(-2)^(3)+3(-2)^(3) +3(-2)^(2)-5(-2)+8`
`=16+16+12+10+8=62`
hence ,the value of a is 5 and remainder is 62 .
232.

The polynomial p{x) = x4 -2x3 + 3x2 - ax + 3a - 7 when divided by x+1 leaves the remainder 19. Find the values of a. Also, find the remainder when p(x) is divided by x+ 2.

Answer»

p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7.

Divisor = x + 1

x + 1 = 0

x = -1

So, substituting the value of x = – 1 in p(x), we get,

p(-1) = (-1)4 – 2(-1)3 + 3(-1)2 – a(-1) + 3a – 7.

19 = 1 + 2 + 3 + a + 3a – 7

19 = 6 – 7 + 4a

4a – 1 = 19

4a = 20

a = 5

Since, a = 5.

We get the polynomial,

p(x) = x4 – 2x3 + 3x2 – (5)x + 3(5) – 7

p(x) = x4 – 2x3 + 3x2 – 5x + 15 – 7

p(x) = x4 – 2x3 + 3x2 – 5x + 8

As per the question,

When the polynomial obtained is divided by (x + 2),

We get,

x + 2 = 0

x = – 2

So, substituting the value of x = – 2 in p(x), we get,

p(-2) = (-2)4 – 2(-2)3 + 3(-2)2 – 5(-2) + 8

⇒ p(-2) = 16 + 16  + 12 + 10 + 8

⇒ p(-2) = 62

Therefore, the remainder = 62.

233.

Determine which of the following polynomials has (x + 1) as a factor. x3 – x2 – x + 1

Answer»

f(- 1) = (- 1)3 – (- 1)2 – (- 1) + 1 

= -1 – 1 + 1 + 1 = 0 

∴ (x + 1) is a factor.

234.

Subtract the second polynomial from the first. i. 5x2 – 2y + 9; 3x2 + 5y – 7 ii. 2x2 + 3x + 5; x2 – 2x + 3

Answer»

i. (5x2 – 2y + 9) - (3x2 + 5y – 7)

= 5x2 – 2y + 9 – 3x2 – 5y + 1 

= 5x2 – 3x2 – 2y – 5y + 9 + 7 

= 2x2 – 1y + 16

ii. (2x2 + 3x + 5) - (x2 – 2x + 3)

= 2x2 + 3x + 5 – x2 + 2x – 3 

= 2x2 – x2 + 3x + 2x + 5 – 3 

= x2 + 5x + 2

235.

When x = – 1, what is the value of the polynomial 2x3 + 2x ? (A) 4 (B) 2 (C) -2(D) -4

Answer»

(A) 4

p(-1) = 2(-1)3 + 2(-1) 

= -2 – 2 = -4

236.

If x – 2 and x – (1/2) both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.

Answer»

p(x) = nx2 – 5x + m 

(x – 2) is a factor of nx2 – 5x + m. 

∴ By factor theorem, 

P(2) = 0 

∴ p(x) = nx2 – 5x + m 

∴ p(2) = n(2)2 – 5(2) + m 

∴ 0 = n(4) – 10 + m 

∴ 4n – 10 + m = 0 …(i) 

Also, (x = 1/2) is a factor of nx2 – 5x + m. 

∴ By factor theorem, p(1/2) = 0 

p(x) = nx2 – 5x + m 

∴ p(1/2) = n(1/2)2 – 5 + m 

0 = (n/4) – (5/2) + m 

∴ 0 = n - 10 + 4m … [Multiplying both sides by 4] 

∴ n = 10 – 4m ……(ii) 

Substituting n = 10 – 4m in equation (i), 

4(10 – 4m) – 10 + m = 0 

∴ 40 – 16m – 10 + m = 0 

∴ -15m + 30 = 0 

∴ -15m = -30 

∴ m = 2 

Substituting m = 2 in equation (ii), 

n = 10 – 4(2) 

= 10 – 8 

∴ n = 2 

∴ m = n = 2

237.

If the polynomial y3 – 5y2+ 7y + m is divided by y + 2 and the remainder is 50, then find the value of m.

Answer»

p(y) = y3 – 5y2 + 7y + m

 Divisor = y + 2 

∴ take y = – 2

 ∴ By remainder theorem, 

Remainder = p(- 2) = 50

 P(y) = y3 – 5y 2+ 7y + m 

∴ P(-2) = (- 2)3 – 5(- 2)2 + 7(- 2) + m 

∴ 50 = -8 – 5(4) – 14 + m 

∴ 50 = -8 – 20 – 14 + m 

∴ 50 = – 42 + m 

∴ m = 50 + 42 

∴ m = 92

238.

If (x – 2) is a factor of x3 – mx2 + 10x – 20, then find the value of m.

Answer»

p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + 0x – 20. 

∴By factor theorem, 

Remainder = p(2) = 0 

p(x) = x– mx2 + 10x – 20 

∴ p(2) = (2)3 – m(2)2 + 10(2) – 20 

∴ 0 = 8 – 4m + 20 – 20 

∴ 0 = 8 – 4m 

∴ 4m = 8 

∴ m = 2

239.

Multiply (x2 – 3) (2x – 7x3 + 4) and write the degree of the product. (A) 5 (B) 3 (C) 2 (D) 0

Answer»

(A) 5

Here, degree of first polynomial = 2 and degree of second polynomial 3 

∴ Degree of polynomial obtained by multiplication = 2 + 3 = 5

240.

If (x31 + 31) is divided by (x + 1), then find the remainder.

Answer»

p(x) = x31 + 31 

Divisor = x + 1 

∴ take x = – 1 

∴ By remainder theorem, 

Remainder = p(-1) 

p(x) = x31 + 31 … 

∴ p(-1) = (-1)31 + 31 

= -1 + 31 = 30 

∴ Remainder = 30

241.

Polynomials bx2 + x + 5 and bx3 – 2x + 5 are divided by polynomial x – 3 and the remainders are m and n respectively. If m – n = 0, then find the value of b.

Answer»

When polynomial bx2 + x + 5 is divided by (x – 3), the remainder is m. 

∴ By remainder theorem,

Remainder = p(3) = m 

p(x) = bx2 + x + 5 

∴ p(3) = b(3)2 + 3 + 5 

∴ m = b(9) + 8 

m = 9b + 8 …(i) 

When polynomial bx3 – 2x + 5 is divided by x – 3 the remainder is n 

∴ remainder = p(3) = n 

p(x) = bx3 – 2x + 5 

∴ P(3) = b(3)3 – 2(3) + 5 

∴ n = b(27) – 6 + 5 

∴ n = 27b – 1 …(ii) 

Now, m – n = 0 …[Given] 

∴ m = n 

∴ 9b + 8 = 27b – 1 …[From (i) and (ii)] 

∴ 8 + 1 = 27b – 9b 

∴ 9 = 18b 

∴ b = 1/2

242.

Simplify `(2x-5y)^(3)-(2x+5y)^(3)`.

Answer» We have, `(2x-5y)^(3)-(2x+5y)^(3)`
`={(2x-5y)-(2x+5y)}{(2x-5y)^(2)+(2x-5y)(2x+5y)+(2x+5y)^(2)} " " [because a^(3)-b^(3)=(a-b)(a^(2)+ab+b^(2))]`
`=(2x-5y-2x-5y)(4x^(2)+25y^(2)-20xy+4x^(2)-25y^(2)_25y^(2)+20xy)`
`=(-10y)(2x^(2)+25y^(2))=-120x^(2)y-250y^(3)`
243.

If the polynomial y3 – 5y2 + 7y + m is divided by y + 2 and the remainder is 50, then find the value of m.

Answer»

p(y) = y3 – 5y2 + 7y + m 

Divisor = y + 2 

∴ take y = – 2 

∴ By remainder theorem, 

Remainder = p(- 2) = 50 

P(y) = y3 – 5y2 + 7y + m 

∴ P(-2) = (- 2)3 – 5(- 2)2 + 7(- 2) + m 

∴ 50 = -8 – 5(4) – 14 + m 

∴ 50 = -8 – 20 – 14 + m 

∴ 50 = – 42 + m 

∴ m = 50 + 42 

∴ m = 92

244.

Show that m – 1 is a factor of m21 – 1 and m22 – 1.

Answer»

i. p(m) = m – 1 

Divisor = m – 1 

∴ take m = 1 

Remainder = p(1) 

p(m) = m21 – 1 

∴ P(1) = 121 – 1 = 1 – 1 = 0 

∴ By factor theorem, m - 1 is a factor of m21 -1.

ii. p(m) = m22 – 1 

Divisor = m – 1 

∴ take m = 1 

Remainder = p(1) 

p(m) = m22 – 1 

∴ P(1) = 122 – 1 = 1 – 1 = 0 

∴ By factor theorem, m -1 is a factor of m22 – 1.

245.

If x – 1 is a factor of the polynomial 3x2 + mx, then find the value of m. (A) 2 (B) -2 (C) -3 (D) 3

Answer»

(C) -3

p(1) = 0 

∴ 3(1)2 + m(1) = 0 

∴ 3 + m = 0 

∴ m = -3

246.

Verify that (x – 1) is a factor of the polynomial x3 + 4x – 5.

Answer»

Here, p(x) = x3 + 4x – 5 

Substituting x = 1 in p(x), we get 

p(1) = (1)3 + 4(1) – 5 

= 1 + 4 – 5 

P(1) = 0 

∴ By remainder theorem, 

Remainder = 0 

∴ (x -1) is the factor of x3 + 4x – 5.

247.

Which polynomial is to be added to 4m + 2n + 3 to get the polynomial 6m + 3n + 10?

Answer»

Let the required polynomial be A. 

∴ (4m + 2n + 3) + A = 6m + 3n + 10 

∴ A = 6m + 3n + 10 – (4m + 2n + 3) 

= 6m + 3n + 10 – 4m – 2n – 3 

= 6m – 4m + 3n – 2n + 10 – 3 

= 2m + n + 7 

∴ 2m + n + 7 must be added to 4m + 2n + 3 to get 6m + 3n + 10

248.

Without actual division, prove that `2x^(4)-5x^(3)+2x^(2)-x+2` is divisible by `x^(2)-3x+2`.

Answer» We have, `x^(2)-3x+2=x^(2)-x-2x+2=x(x-1)-2(x-1)=(x-1)(x-2)`
Let `p(x)=2x^(4)-5x^(3)+2x^(2)-x+2`
Now, `p(1)=2(1)^(4)-5(1)^(3)+2(1)^(2)-1+2=2-5+2-1+2=0`
Therefore, (x-1) divides p(x),
and `p(2)=2(2)^(4)-5(2)^(3)+2(2)^(2)-2+2=32-40+8-2+2=0`
Therefore, (x-2) divides p(x).
So, `(x-1)(x-2)=x^(2)-3x+2` divides `2x^(4)-5x^(3)+2x^(2)-x+2`
249.

Without actual division, prove that `2x^4-5x^3+2x^2-x+2`is exactly divisible by `x^2-3x+2.`

Answer» Let `p(x) =2x^(4) -5x^(3)+2x^(2)-x+2`firstly,factorise `x^(2)-3x+2.`
now `x^(2)-3x+2=x^(2)-2x-x+2` [by splitting middle term]
`=x(x-2)-1(x-2)=(x-1)(x-2)`
hence `o. "of " x^(2)-3x+2 are 1 and 2.`
we have to prove that ` 2x^(4)-5x^(3)+2x^(2) -x+2` is divisible by`x^(2)-3x+2`
i.e ., to prove that p(1) =0 and p(2) -0
Now , `p(1) =2(1)^(4)-5(1)^(3)+2(1)^(2)-1+2`
` =2-5+2-1+2=6-6=0`
and `p(2) =2(2)^(4)-5(2)^(3)+2(2)-2+2`
`=2xx16-5xx8+2xx4+0`
`=32-40+8=40-40=0`
hence p(x) is divisible by` x^(2)-3x+2.`
250.

Find the remainder when the polynomial `p(x)=x^(4)-3x^(2)+5x+1` is divided by (x-2).

Answer» Let x-2=0
`implies x=2`
`therefore " " p(x)=x^(4)-3x^(2)+4x+50`
`implies " " p(2)=2^(4)-3(2)^(2)+5(2)+1`
=16-12+10+1=15
`therefore ` Remainder =15