Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

Divide the first polynomial by the second polynomial and find the remainder using remainder theorem. i. (x2 – 1x + 9); (x + 1) ii. (2x3 – 2x2 + ax – a); (x – a) iii. (54m3 + 18m2 – 27m + 5); (m – 3)

Answer»

i. p(x) = x2 – 7x + 9 

Divisor = x + 1 

∴ take x = – 1 

∴ By remainder theorem, 

∴ Remainder =p(-1) 

p(x) = x2 – 7x + 9 

∴ p(-1) = (- 1)2 – 7(- 1) + 9 

= 1 + 7 + 9 

∴ Remainder = 17

ii. p(x) = 2x3 – 2x2 + ax – a 

Divisor = x – a 

∴ take x = a 

By remainder theorem, 

Remainder = p(a) 

p(x) = 2x3 – 2x2 + ax – a 

∴ p(a) = 2a3 – 2a2 + a(a) – a 

= 2a3 – 2a2 + a2 – a 

∴ Remainder = 2a3 – a2 – a 

iii. p(m) = 54m3 + 18m2 – 27m + 5 

Divisor = m – 3 

∴ take m = 3 

∴ By remainder theorem, 

Remainder = p(3) 

p(m) = 54m3 + 18m2 – 27m + 5 

∴ p(3) = 54(3)3 +18(3)2 – 27(3) + 5 

= 54(27) + 18(9) – 81 + 5 

= 1458 + 162 – 81 + 5

∴ Remainder = 1544

252.

For which value of m, x + 3 is the factor of the polynomial x3 – 2mx + 21?

Answer»

Here, p(x) = x3 – 2mx + 21 

(x + 3) is a factor of x3 – 2mx + 21. 

∴ By factor theorem, 

Remainder = 0 

∴ P(- 3) = 0 

p(x) = x3 – 2mx + 21 

∴ p(-3) = (-3)3 – 2(m)(-3) + 21 

∴ 0 = – 27 + 6m + 21 

∴ 6 + 6m = 0 

∴ 6m = 6 

∴ m = 1 

∴ x + 3 is the factor of x3 – 2mx + 21 for m = 1.

253.

Check whether – 2 and 2 are the zeroes of the polynomial x4 – 16.

Answer»

Given polynomial is x4 – 16 

Let p(x) = x4 – 16 

We have p(-2) = (-2)4 – 16 

= 16 – 16 = 0 and 

p(2) = (2)4 – 16 

= 16 – 16 = 0 

p(-2) = 0 and p(2) = 0. 

So these are zeroes of the polynomial.

254.

Check whether -3 and 3 are the zeroes of the polynomial x2 – 9. 

Answer»

Given polynomial p(x) = x2 – 9 

Zero of the polynomial p(x) = 0 

x2 – 9 = 0 

⇒ x2 = 9 

⇒ x = 9 = ± 3 

∴ x = + 3, – 3 

∴ Zeroes of the polynomial p(x) are – 3 and 3.

255.

In the polynomial p(x)= 3x2 – 4x + 7, check whether p(1) + p(2) = p(3) and P(2) × p(3) = p(6).

Answer»

p(x) = 3x2 – 4x + 7

p(1) = 3(1)2 – 4(1) + 7 = 3 – 4 + 7 = 6

p(2) = 3(2)2 - 4(2) + 7 = 12 – 8 + 7 = 11

p(3) = 3(3)2 – 4(3) +7 = 27 – 12 + 7 = 22

p(l) + p(2) ≠ p(3)

p(6) = 3(6)2 -4(6) + 7 = 108 – 24 + 7 = 91

P(2) × p(3) ≠ p(6)

256.

Check whether 3 and -2 are the zeroes of the polynomial p(x) when p(x) = x2 – x – 6.

Answer»

Given polynomial p(x) = x2 – x – 6 

We have, p(3) = 32 – 3 – 6 

= 9 – 3 – 6

= 9 – 9 

= 0 and 

p(-2) = (-2)2 – (-2) – 6 

= 4 + 2 – 6 

= 6 – 6 

= 0 

We see that p(3) = 0 and p(-2) = 0 

∴ 3 and – 2 are the zeroes of the polynomial p(x).

257.

Divide the polynomial `p(x)=x^4 -3x^2+4x+5` by the polynomial `g(x)=x^2-x+1` and find quotient and remainder.

Answer» Correct Answer - `q(x)=x^(2)+x-3, r(x)=8`
258.

BY actual division , find the quotient and the remainder when the first polynomial is divided by the second polynomial `x^(4)+1 and x-1` .

Answer» Using long method
`x-1)x^(4)+1(x^(3)+x^(2)+x+1`
`(x^(4)-x^(3))/(x^(3)+1)`
`(underline(x)^(3)underset(+)(-)x^(2))/(x^(2)+1)`
`(underline(x)^(2)underset(+)(-)x)/(x+1)`
`(underline(x)- underset(+)1)/(2)`
Hence ,Quotient `=x^(3)+x^(2)+x+1 ` and Remainder =2
259.

How do you say that the maximum number of zeroes of x2 + 8x + 15 is 2 ?

Answer»

The order of polynomial x2 + 8x + 15 is 2. 

Hence the maximum number of zeroes of it is 2. 

Since the maximum possible zeroes of a polynomial is equal to its order.

260.

Check whether ‘6’ becomes a zero of x2 + 8x + 15 or not ? Give reasons.

Answer»

If p(k) = 0 then ‘k’ is a zero value of p(x) 

Now p(x) = x2 + 8x + 15 then 

p(6) = 62 + 8 (6) + 15 

= 36 + 48 + 15 ≠ 0 

As p(6) ≠ 0, ‘6’ cannot be the zero value of p(x).

261.

8 times of a number is added to its square give a result – 15. Then find the number by using its quadratic equation.

Answer»

Let us consider the given number = x Then its square = x2

8 times of it = 8x 

Now adding the above two x2 + 8x result is = – 15 

x2 + 8x = -15 

x2 + 8x + 15 = 0 

x2 + 5x + 3x + 15 = 0 

⇒ x(x + 5) + 3(x + 5) = 0 

⇒ (x + 3) (x + 5) = 0 

∴ x + 3 = 0 or x + 5 = 0 

Then x = – 3 or – 5

262.

If x2 + 1 has no zeroes then ‘x’ is a A) Real numberB) Natural number C) Not Real D) Integer

Answer»

Correct option is (C) Not Real

\(\because\) \(x^2\geq0\)

\(\Rightarrow\) \(x^2+1\geq1\)

\(\Rightarrow\) \(x^2+1>0\)

Hence, \(x^2+1\) never gives a zero for any real number, but if \(x^2+1\) has a zero then x never be a real number.

Hence, if \(x^2+1\) has a zero then x is not a real number.

Correct option is  C) Not Real

263.

If p(x) = x2 – 5x – 6; find the value of p(3).

Answer»

p(x) = x2 – 5x – 6 (given) . 

p(3) = 32 – 5(3) – 6 

= 9 – 15 – 6 

= 9 – 21 

= -12 

So p(3) = – 12.

264.

When a polynomial `p(x)` of degree 3 is divided by `3x^2-8x+5` quotient and remainder obtained are linear polynomial such that `p(1)=19` and `p(5/3)=25`. So,find the remainder polynomial.

Answer» `f(x)=(3x^2-8x+5)(ax+b)+(c+d)`
Put x=1
`p(1)=(3*1-8+5)(a+b)c+d=19`
`c+d=19-(1)`
Put x=-5/3
`p(5/3)=(3*25/9-8*5/3+5)(a5/3+b)+(c*5/3+d)=25`
`(-5+5)(5/3a+b)+(5/3c+d)=25`
`5/3C+d=25`
`5C+3d=75-(2)`
subtracting equation 1 from equation 2
`2C=18`
`c=9`
`c+d=19`
`9+d=19`
`d=10`
Remainder=cx+d=9x+10.
265.

In how many points will the graph of x2 + 8x + 15 intersect X-axis ? Why ?

Answer»

We can write x2 + 8x + 15 as x2 + 5x + 3x + 15 

⇒ (x + 5) (x + 3) 

So its zero values are -5, -3

So the graph of x2 + 8x + 15 intersect x axis at two points only.

266.

Statement A : Cubic polynomial has at most three zeroes.Statement B : Degree of the zero poly-nomial is zero. A) Both A and B are true B) Both A and B are false C) A is true and B is false D) A is false and B is true

Answer»

A) Both A and B are true

267.

The polynomial of degree ‘n’ has ………… zeroes. A) 1 B) n + 1 C) n – 1 D) n

Answer»

Correct option is (D) n

The polynomial of degree n has n zeroes.

Correct option is  D) n

268.

The number of zeroes of a polynomial of degree ‘n’ will have A) n – 1 B) n + 1 C) 0 D) n

Answer»

Correct option is (D) n

A polynomial of degree n will have n number of zeroes.

Correct option is D) n

269.

The number of zeroes of the polynomial 7x/3 = -5 A) 1 B) 2 C) 3 D) many

Answer»

Correct option is (A) 1

\(\frac{7x}{3}=-5\)

\(\Rightarrow\) \(x=-5\times\frac37\) \(=\frac{-15}7\)

\(\frac{-15}7\) is only zero of polynomial \(\frac{7x}{3}=-5\)

\(\therefore\) Number of zeros of polynomial \(\frac{7x}{3}=-5\) is 1.

Correct option is  A) 1

270.

If `alpha, beta, gamma` be the zeros of the polynomial p(x) such that `(alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 ` then p(x) = ?A. `x^(3)+3x^(2)-10x+24`B. `x^(3)+3x^(2)+10x-24`C. ` x^(3) - 3x^(2) - 10x + 24`D. none of these

Answer» Correct Answer - C
` p(x) = x^(3) -(alpha+beta+gamma) x^(2) + (alpha beta+beta gamma+gamma alpha) x - alpha beta gamma`
` = x^(3) - 3x^(2) - 10x + 24.`
271.

If `alpha, beta, gamma` are the zeros of the polynomial `2x^(3)+ x^(2) - 13 x+ 6` then `alpha beta gamma`= ?A. ` -3`B. 3C. `(-1)/2`D. `(-13)/2`

Answer» Correct Answer - A
`alpha beta gamma = (-d)/a = (-6)/2 =- 3.`
272.

Using remainder theorem, find the remainder when `p(x) = x^(3)+ 3x^(2) - 5x+4` is divided by (x-2).

Answer» Correct Answer - 14
273.

Express the polynomial x2 + 8x + 15 in view of variable ‘y’.

Answer»

y = x2 + 8x + 15 

= x2 + 5x + 3x + 15 

= x (x + 5) + 3 (x + 5) 

y = (x + 3) (x + 5)

274.

Find p(3) if p(x) = x2 – 5x + 6 is given.

Answer»

p(x) = x2 – 5x + 6 (given) 

then p(3) = 32 – 5(3) + 6 

= 9 – 15 + 6 = 15 – 15 = 0 

∴ P(3) = 0

275.

How will you verify if a quadratic polynomial it has only one zero?

Answer»

If the graph of the given quadratic polynomial touches X – axis at exactly one point, then I can confirm it has only one zero.

276.

Zeroes of the polynomial 9x2 – 12x + 4 are A) 2/3 , 2/3B) 3/2 , -3/2C) -3/2 , -3/2 D) (3,2)

Answer»

Correct option is (A) 2/3, 2/3

Let p(x) = \(9x^2-12x+4\)

p(x) = 0 gives \(9x^2-12x+4=0\)

\(\Rightarrow\) \((3x)^2-2\times3x\times2+2^2=0\)

\(\Rightarrow\) \((3x-2)^2=0\)

\(\Rightarrow\) 3x - 2 = 0 or 3x - 2 = 0

\(\Rightarrow\) x = \(\frac{2}{3}\) or x = \(\frac{2}{3}\)

\(\therefore\) \(\frac{2}{3}\;and\;\frac{2}{3}\) are zeroes of polynomial \(9x^2-12x+4.\)

Correct option is  A) 2/3 , 2/3

277.

If a+b+c=0, then roots of the equation `3ax^2+4bx+5c=0` are(A) Positive (B) negative (C) Real and distinct (D) imaginary

Answer» It is given that,
`a+b+c = 0`
`=>b = -(a+c)->(1)`
Now, given equation is,
`3ax^2+4bx+5c = 0`
`:.` Disciminant `(D) = (4b)^2 - 4(3a)(5c) `
`=>D = 16b^2-60ac`
From (1),
`=>D = 16(-(a+c))^2 - 60ac`
`=>D = 16a^2+16c^2+32ac-60ac`
`=>D = 16a^2+16c^2-28ac`
Now, we have two caes.
Case - 1 : When `a` and `c` are of opposite signs.
Then `D` wil be positive.
Case - 2 : When `a` and `c` are of same signs.
`=>D = 16a^2+16c^2-32ac+4ac`
`=>D = 16(a-c)^2+4ac`
Again `D` will be positive.
As `D` is positive, it means roots of the given equation are real and distinct.
278.

Find the zeros : `2x^2-11x+15`

Answer» `2x^2-11x+15=0`
`2x^2-6x-5x+15=0`
`2x(x-3)-5(x-3)=0`
`(x-3)(2x-5)=0`
`x=3,5/2`.
279.

If `alpha, beta, gamma ` are the zeros of the polynomial `p(x) = 6x^(3)+3x^(2)-5x+1,` find the value of `(1/alpha+1/beta+1/gamma).`

Answer» Correct Answer - 5
280.

Find all the zeros of the polynomial `f(x)=2x^4-3x^3-3x^2+6x-2`, if two of its zeros are `sqrt(2)`and `-sqrt(2)`.

Answer» Correct Answer - `1, 1/2`
281.

If one zero of the polynomial `p(x) = x^(3) - 6x^(2) + 11x - 6 ` is 3, find the other two zeros.

Answer» Correct Answer - `1, 2`
282.

Write three quadratic polynomials that have no zeroes for x that are real numbers.

Answer»

The quadratic polynomials y = 2x2 – 4x + 5 and y = – 3x2 + 2x – 1 and y = x2 – 2x + 4 have no zeroes.

283.

Write three quadratic polynomials that have 2 zeroes each. 

Answer»

y = x2 – x – 2 having two zeroes, i.e., (2, 0) and (- 1, 0). 

y = 3 – 2x – x2 having two zeroes i.e., (1,0) and (- 3, 0). 

y = x2 – 3x – 4 having two zeroes i.e., (-1, 0) and (4, 0)

284.

Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is(A) (–c/a) (B) c/a(C) 0 (D) (–b/a)

Answer»

(B) (c/a)

Explanation:

According to the question,

We have the polynomial,

ax3 + bx2 + cx + d

We know that,

Sum of product of roots of a cubic equation is given by c/a

It is given that one root = 0

Now, let the other roots be α, β

So, we get,

αβ + β(0) + (0)α = c/a

αβ = c/a

Hence the product of other two roots is c/a

Hence, option (B) is the correct answer

285.

Find the zeroes of cubic polynomials.i) - x3ii) x2 - x3(iii) x3 – 5x2 + 6x

Answer»

i) Given polynomial is y = – x3 

f(x) = -x3 ; f(x) = 0 2

x3 = 0 

x = \(\sqrt[3]{0}\)= 0 

∴ Zero of the polynomial f(x) is only one i.e., 0.

ii) Given that y = x2 – x3 

f(x) = x2 (1 – x) 

f(x) = 0 

⇒ x2 (1 – x) = 0 

⇒ x2 = 0 and 1 – x = 0 

⇒ x = 0 and x = 1 

∴ The zeroes of the polynomial f(x) are two i.e., 0 and 1.

iii) Given that x3 – 5x2 + 6x Let f(x) = x3 – 5x2 + 6x 

= x(x2 – 5x + 6) 

= x(x2 – 2x – 3x + 6) 

= x[x(x – 2) – 3(x – 2)] 

= x(x – 2) (x – 3) 

∴ The zeroes of the polynomial f(x) are x = 0 and x = 2 and x = 3

286.

Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials (x) `7y^(2)-(11)/(3)y -(2)/(3)`

Answer» Let `f(y) = 7y^(2)-(11)/(3)y -(2)/(3)`
`= 21 y^(2) - 11y - 2`
`= 21y^(2) - 14y +3y -2` [by splitting the middle term]
`=7y (3y -2)+1(3y -2)`
`=(3y-2) (7y+1)`
So, the value of `7y^(2)-(11)/(3)y -(2)/(3)` is zero when `3y - 2 = 0` or `7y +1 = 0`.
i.e., when `y = (2)/(3)` or `y =- (1)/(7)`.
So, the zeroes of `7y^(2) -(11)/(3)y - (2)/(3)` are `(2)/(3)` and `-(1)/(7)`
`:.` Sum of zeroes `= (2)/(3)-(1)/(7) =(14-3)/(21) =(11)/(21) = -((-11)/(3xx7))`
`=(-1) (("Coefficient of y"))/(("Coefficient of" y^(2)))`
and product of zeroes `= ((2)/(3)) (-(1)/(7)) =(-2)/(21) = (-2)/(3xx7)`
`= (-1)^(2) (("Constant term")/("Coefficient of " y^(2)))`
Hence, verified the relations between the zeroes and the coefficients of the polynomial.
287.

Find quadratic polynomial whose zeroes are √2 and 2√2.

Answer»

Let the zeroes of the quadratic polynomial be

α = √2, β = 2√2

Then, α + β = √2 + 2√2 = √2 (1 + 2) = 3√2

αβ = √2× 2√2 = 4

Sum of zeroes = α + β = 3√2

Product of zeroes = αβ = 4

Then, the quadratic polynomial

= x2 – (sum of zeroes)x + product of zeroes

= x2 – (3√2)x + 4

= x2 – 3√2 x + 4

288.

find the zeroes of the polynomial f(x) = `x^3`-`12x^2` +39x -28 , if the zeroes are in A.P

Answer» Let the roots of the given equation `x^3-12x^2+39x - 28 = 0` are,
`a-d, a and a+d` as they are in A.P.
Then, sum of roots,
`a-d+a+a+d = -(-12) `
`=> 3a = 12 => a= 4`
Product in pairs of the roots.
`a(a-d)+a(a+d)+(a-d)(a+d) = 39`
`=>a(a-d+a+d))+a^2-d^2 = 39`
`=>3a^2 - d^2 = 39`
`=>3(4)^2 -39 = d^2`
`=>d = +-3`
If `d = 3`, roots are `1,4 and 7`.
If `d = -3`, roots are `7,4 and 1`.
289.

If the zeros of the polynomial f(x) = 2x3 – 15x2 + 37x – 30 are in A.P., find them.

Answer»

Let the zeros of the given polynomial be α, β and γ. (3 zeros as it’s a cubic polynomial) 

And given, the zeros are in A.P. 

So, let’s consider the roots as 

α = a – d, β = a and γ = a + d 

Where, a is the first term and d is the common difference. 

From given f(x), a = 2, b = -15, c = 37 and d = 30 

⇒ Sum of roots = α + β + γ 

= (a – d) + a + (a + d) 

= 3a 

= (\(\frac{-b}{a}\)

= -(\(\frac{-15}{2}\)

= \(\frac{15}{2}\) 

So, calculating for a, we get 3a = \(\frac{15}{2}\) 

⇒ a = \(\frac{5}{2}\) 

⇒ Product of roots = (a – d) x (a) x (a + d) 

= a(a2 –d2

= \(\frac{-d}{a}\)

= \(\frac{-(30)}{2}\) 

= 15 

⇒ a(a2 –d2) = 15 

Substituting the value of a, we get 

⇒ (\(\frac{5}{2}\))[(\(\frac{5}{2}\))2 –d2] = 15 

⇒ 5[(\(\frac{25}{4}\)) –d2] = 30 

⇒ (\(\frac{25}{4}\)) – d2 = 6 

⇒ 25 – 4d2 = 24 

⇒ 1 = 4d2 

∴ d = \(\frac{1}{2}\) or -\(\frac{1}{2}\)

Taking d = \(\frac{1}{2}\) and a = \(\frac{5}{2}\) 

We get, 

the zeros as 2, \(\frac{5}{2}\) and 3 

Taking d = -\(\frac{1}{2}\) and a = \(\frac{5}{2}\) 

We get, the zeros as 3, \(\frac{5}{2}\) and 2.

290.

If 3 is a zero of polynomial 2x2 + x + k, then value of k will be(A) 12(B) 21(C) 24(D) -21

Answer»

Answer is (D) -21

Let f(x) = 2x2 + x + k

One zero is 3

f(3) = 0

⇒ 2(3)2 + 3 + k = 0

⇒ 2 × 9 + 3 + k = 0

⇒ 18 + 3 + k = 0

⇒ k = -21

291.

Find the zeros of quadratic polynomial x2 + x – 2 and  verify the relationship between zeros and coeffcient.

Answer»

Given quadratic polynomial

f(x) = x2 + x – 2 = x2 + 2x – x – 2 

= x (x + 2) – 1 (x + 2) = (x – 1) (x + 2)

To find zero, f(x) = 0

(x- 1) (x + 2) = 0

x – 1 = 0 or x + 2 = 0

x = 1 or x = -2

Thus 1 and -2 are two zeros of given polynomial

Relation between zeros and coefficient

Sum of zeros = 1 + (- 2) = – 1

and product of zeros = 1 × (-2) = -2

Comparing given polynomial with ax2 + bx + c

a = 1, b = 1 and c = -2

Sum of zeros = -b/a = -1/1 = -1

and product of zeros = c/a = --2/1 = -2

Hence, relationship between zeros and coefficient is verified.

292.

If every pair from among the equations `x^2+px+qr=0,x^2+qx+rp=0 and x^2+rx+pq` has a common root then the product of three common root is (A) pqr (B) 2pqr (C) `p^2q^2r^2`(D) none of these

Answer» Let `alpha, beta` are the roots of `x^2+px+qr = 0.`
Then, `alphabeta = qr ->(1)`
Let `beta, gamma` are the roots of `x^2+qx+rp = 0.`
Then, `betagamma = rp ->(2)`
Let `gamma, alpha` are the roots of `x^2+rx+pq = 0.`
Then, `gammaalpha= pq ->(3)`
Multiplying (1),(2) and (3),
`=> (alphabetagamma)^2 = (pqr)^2`
`=> alphabetagamma = pqr`
So, option `A` is the correct option.
293.

Find the zeros of the polynomial `x^2 + x-p(p+1).`

Answer» Correct Answer - `-(p+1) and p`
`x^(2) + x-p(p+1)= x^(2)+(p+1) x - px - p(p+1)`
` x{x+(p+1)}-p{x+(p+1)}`
` ={x+(p+1)}{x-p}.`
So, its zeros are `-(p+1) and p.`
294.

If α, β are zeros of any quadratic equation, then write the quadratic equation.

Answer»

k[x2 – (α + β)x + αβ]

295.

Can x2 – 1 be the quotient on division of x6 + 2x3 + x – 1 by a polynomial in x of degree 5?Justify your answer.

Answer»

No, x2 – 1 cannot be the quotient on division of x6 + 2x3 + x – 1 by a polynomial in x of degree 5.

Justification:

When a degree 6 polynomial is divided by degree 5 polynomial,

The quotient will be of degree 1.

Assume that (x2 – 1) divides the degree 6 polynomial with and the quotient obtained is degree 5 polynomial (1)

According to our assumption,

(degree 6 polynomial) = (x2 – 1)(degree 5 polynomial) + r(x) [ Since, (a = bq + r)]

= (degree 7 polynomial) + r(x) [ Since, (x2 term × x5 term = x7 term)]

= (degree 7 polynomial)

From the above equation, it is clear that, our assumption is contradicted.

x2 – 1 cannot be the quotient on division of x6 + 2x3 + x – 1 by a polynomial in x of degree 5

Hence Proved.

296.

The number of polynomials having zeroes as –2 and 5 is(A) 1 (B) 2(C) 3 (D) more than 3

Answer»

(D) more than 3

Explanation:

According to the question,

The zeroes of the polynomials = -2 and 5

We know that the polynomial is of the form,

p(x) = ax2 + bx + c.

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2 i.e.

Sum of the zeroes = – b/a

– 2 + 5 = – b/a

3 = – b/a

b = – 3 and a = 1

Product of the zeroes = constant term ÷ coefficient of x2 i.e.

Product of zeroes = c/a

(- 2)5 = c/a

– 10 = c

Substituting the values of a, b and c in the polynomial p(x) = ax2 + bx + c.

We get, x2 – 3x – 10

Therefore, we can conclude that x can take any value.

Hence, option (D) is the correct answer.

297.

One zero of the polynomial `3x^3+ 16x^2 + 15x -18` is `2/3.`Find the other zeroes of the polynomnial.

Answer» Here, `p(x) = 3x^3+16x^2+15x-18`
One of the zero is `2/3`.
`:. x = 2/3 = 0 => 3x-2 = 0`
If we divide, `p(x)` by `3x-2`, we get, `x^2+6x+9`.
`:. p(x) = (3x-2)(x^2+6x+9)`
`= (3x-2)(x^2+3x+3x+9)`
`= (3x-2)(x(x+3)+3(x+3))`
`=>p(x)= (3x-2)(x+3)(x+3)`
So, all the zeroes of `p(x)` are `2/3,-3,-3`.
298.

What is the zero of polynomial?

Answer»

The value of x for which polynomial f(x) = 0, is called zero of the polynomial.

299.

If f(x) are two expressions, then write the relationship between their L.C.M. and H.C.F.

Answer»

L.C.M. × H.C.F. = f(x) × g(x)

300.

If one zero of the polynomial `x^3-4x+1` is `2+sqrt3` write the other zero

Answer» Correct Answer - `(2-sqrt3)`
Let the other zero be `alpha`.
Then, sum of zoros = `(-("coefficient of x"))/(("coefficient of " x^(2)) = (-(-4))/1 = 4.`
`:. (2 + sqrt3)+ alpha = 4 rArr alpha= (2 - sqrt3).`