Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 2 and –3, then(A) a = –7, b = –1 (B) a = 5, b = –1(C) a = 2, b = – 6 (D) a = 0, b = – 6

Answer»

(D) a = 2, b = – 6

Explanation:

Zeroes of a polynomial is all the values of x at which the polynomial is equal to zero.

2 and - 3 are the zeroes of the polynomial p(x) = x2 + (a + 1)x + b

i.e. p(2) = 0 and p(- 3) = 0

p(2) = (2)2 + (a + 1)(2) + b = 0

= 4 + 2a + 2 + b = 0

= 6 + 2a + b = 0 (1)

P(- 3) = (- 3)2 + 9 + (a + 1)(- 3) + b = 0

= 9 - 3a - 3 + b = 0

= 6 - 3a + b = 0 (2)

Equating (1) = (2), as both the equations are equal to zero. Hence both equations are equal to each other.

6 + 2a + b = 6 - 3a + b

= 5a = 0

⇒ a = 0

Putting the value of ‘a’ in (1)

6 + 2(0) + b = 0

⇒ b = - 6

OR

The equation of a quadratic polynomial is given by x2 - (sum of the zeroes) x + (product of the zeroes)

Sum of the zeroes = - (coefficient of x) ÷ coefficient of x2

⇒ sum of the zeroes = - (a + 1)

= 2 - 3 = - a - 1

= - 1 + 1 = - a

= - a = 0

⇒ a = 0

Product of the zeroes = constant term ÷ coefficient of x2

⇒ b = product of the zeroes

= 2(- 3)

= 6

302.

If (x + a) is a factor of the polynomial 2x2 + 2ax + 5x + 10, find the value of a.

Answer»

Given: (x + a) is a factor of polynomial 2x2 + 2ax + 5x + 10.

So, we have

x + a = 0

or x = –a , will satisfy the given polynomial.

Therefore, we will have

2 (–a)2 + 2a(–a) + 5(–a) + 10 = 0

2a2 –2a2 – 5a + 10 = 0

– 5a = – 10

a = 2

The value of a is 2.

303.

Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1? Justify your answer.

Answer»

A Quadratic Equation will have equal roots if it satisfies the condition:

b2 – 4ac = 0

Given equation is x2 + kx + k = 0

a = 1, b = k, x = k

Substituting in the equation we get,

k2 – 4 ( 1 ) ( k ) = 0

k2 – 4k = 0

k ( k – 4 ) = 0

k = 0 , k = 4

But in the question, it is given that k is greater than 1.

Hence the value of k is 4 if the equation has common roots.

Hence if the value of k = 4, then the equation ( x2 + kx + k ) will have equal roots.

304.

One zero of the polynomial `3x^3+ 16x^2 + 15x -18` is `2/3.`Find the other zeroes of the polynomial.

Answer» Correct Answer - ` -3, -3 `
`(x-2/3) ` is a factor of the given polynomial and therefore, (3x-2) is also its factor.
On dividing the given polynomial by (3x-2), we get `(x^(2) + 6x+9)` as quotient, i.e., `(x+3)^(2) = 0 rArr x =- 3.`
305.

If α and β are zeros of any quadratic polynomial ax2 + bx + c, then write the value of α + β and αβ.

Answer»

α + β = -b/a and αβ = c/a

306.

If x = 2/3 and x = -3 are the roots of the quadratic equation ax2 + 7x + b = 0 then find the values of a and b.

Answer»

Given roots are: x = 2/3 and x = -3

and quadratic equation ax2 + 7x + b = 0

Since x = 2/3 and x = -3 are roots of the above quadratic equation

Hence, will satisfy the given equation.

Step 1: At x = 2/3

a(2/3)2 + 7(2/3) + b=0

4/9 a + 14/3 + b = 0

4a + 42 + 9b = 0 ………….equation (1)

Step 2: At x = –3

a(-3)+ 7(-3)+b=0

9a – 21 + b = 0 ………….equation (2)

Step 3: Solving equation (1) and equation (2), we get

a = 3, b = –6

307.

If x+a is a factor of `2x^(2)+2ax+5x+10`, find the value of a.

Answer» Correct Answer - a = 2
Let ` f(x) = 2x^(2) + 2ax + 5x + 10.`
Since (x+a) is a factor of f(x), we have `f(-a) = 0`.
`:. 2(-a)^(2) + 2a (-a) + 5(-a) + 10 = 0`
` rArr 2a^(2) - 2a^(2) - 5a + 10 = 0 rArr 5a = 10 rArr a = 2.`
308.

If α and β are the zeros of the polynomial f(x) = 6x2 + x ‒ 2, find the value of (α/ β + β / α).

Answer»

Given: α and β are zeroes of f(x) = 6x2 + x – 2

To find: (α/ β + β / α)

α + β = Sum of zeros = -(coefficient of x)/(coefficient of x2) = -1/6

α β = Product of zeros = (constant term)/(coefficient of x2) = -1/3

Now,

(α/ β + β / α) = {(α + β)2 – 2αβ) / αβ }

= (1/36 + 2/3) / (-1/3)

= -25/12

309.

Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients: `5y^(2)+10y`

Answer» Correct Answer - `0, -2`
` 5y^(2)+10y=5y(y+2).`
310.

If ` x = 2/3 and x =- 3` are the roots of the quadratic equation ` ax^(2) +7x+b = 0` then find the values of a and b.

Answer» Correct Answer - ` a=3, b =- 6`
Sum of the roots `=(2/3 - 3)=(-7)/3.`
Product of roots ` = 2/3 xx (-3)=- 2.`
`:. {(-7)/a = (-7)/a =- 2} rArr a = 3 and b =- 6.`
311.

Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients: `3x^(2)-x-4`

Answer» Correct Answer - `4/3, -1`
` 3x^(2)-x-4=3x^(2)-4x+3x-4=x(3x-4)+(3x-4)=(3x-4)(x+1).`
312.

If α and β are the zeros of the polynomial 2x2 + 7x + 5, write the value of α + β + αβ.

Answer»

Given: α and β are the zeros of polynomial 2x2 + 7x + 5

α + β = Sum of zeros = -(coefficient of x)/(coefficient of x2) = -7/2

αβ = Product of zeros = (constant term)/(coefficient of x2) = 5/2

α + β + αβ = (α + β) + αβ 

= -7/2 + 5/2 

= -1

313.

Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients: `x^2+7x+12`

Answer» Correct Answer - `-4, -3`
314.

If α and β are the zeros of the quadratic polynomial p(y) = 5y2 – 7y + 1, find the value of \(\frac{1}{α} +\frac{1}{β}\).

Answer»

From the question, it’s given that: 

α and β are the roots of the quadratic polynomial f(x) where a =5, b = -7 and c = 1 

Sum of the roots = α+β = \(\frac{-b}{a}\)

= – \(\frac{(-7)}{5}\) 

= \(\frac{7}{5}\) 

Product of the roots = αβ 

= \(\frac{c}{a}\) 

= \(\frac{1}{5}\) 

\(\frac{1}{α} +\frac{1}{β}\) 

\(\frac{(α +β)}{ αβ}\)

⇒ \(\frac{7}{5} \over \frac{1}{5}\)

= 7

315.

(b) Find the HCF of `51x^(2) (x + 3)^(3) (x -2)^(2) and 34 x(x -1)^(5) (x -2)^(3)`

Answer» Let `f(x) = 51 x^(2) (x + 3)^(3) (x -2)^(2) and g(x) = 34 (x -1)^(5) (x -2)^(3)`
Writing f(x) and g(x) as the product of the powers of irredcible factors
`f(x) = 17. 3 . x^(2) (x +3)^(3) . (x -2)^(2)`
`g(x) = 17 .2 . x(x -1)^(5) .(x -2)^(3)`
The common factors with the least exponents are 17, x and `(x -2)^(2)`
`:.` The HCF of the given polynomials `=17. x . (x -2)^(2) = 17 x (x -2)^(2)`
316.

(a) Find the HCF of `48x^(5) y^(2) and 112 x^(3) y`

Answer» Let `f(x) = 48x^(5) y^(2) and g(x) = 112 x^(3) y`
Writing f(x) and g(x) as a product of powers of irreducible factors
`f(x) = 2^(4).3. x^(5). Y^(2)`
`g(x) = 2^(4). 7. x^(3). Y`
The common factors with the least exponents are `2^(4), x^(3) and y`
`:. HCF = 16x^(3) y`
317.

(b) Factorize `216 x^(3) - 64y^(3)`

Answer» `216 x^(3) - 64y^(3)`
`= (6x)^(3) - (4y)^(3)`
`= (6x -4y) {(6x)^(2) + (4y)^(2) + (6x) (4y)}`
`= (6x - 4y) (36x^(2) + 16y^(2) + 24 xy)`
318.

(a) Factorize `27a^(3) + 125 x^(3)`

Answer» `27a^(3) + 125 x^(3)`
`= (3a)^(3) + (5x)^(3)`
`= (3a + 5x) {(3a)^(2) + (5x)^(2) - (3a) (5x)}`
`= (3a + 5x) (9a^(2) + 25x^(2) - 15ax)`
319.

(b) Factorize `7 -17x - 12x^(2)`

Answer» Here, `(7) (-12) = -84 = (-21) (4) and -17 = -21 + 4`
`7 - 17x - 12x^(2)`
`=7 -21x + 4x - 12x^(2)`
`= 7 (1-3x) + 4x (1- 3x) = (1- 3x) (7 + 4x)`
320.

Use suitable identities to find the following products:(i) `(x+4)(x+10)` (ii) `(x+8)(x-10)`(iii) `(3x+4)(3x-5)`(iv) `(y^2+3/2)(y^2-3/2)`(v) `(3-2x)(3+2x)`

Answer» (i) `(x+4)(x+10)`
using identity `(x+a)(x+b) = x^2 + (a+b)x + ab`
`x^2 + (4+10)x + 4(10)`
`x^2 + 14x + 40 `
(ii) `(x+8)(x-+(-10))`
`x^2 + (8-10)x + 8(-10)`
`= x^2 -2x -80`
(iii) `(3x + 4)(3x-5)`
`(3x)^2 + (4-5)(3x) + 4*(-5)`
`= 9x^2 - 3x - 20`
(iv) `(y^2 + 3/2)(y^2 - 3/2)`
`= (y^2)^2 - (3/2)^2 = y^4 - 9/4`
(v) `(3-2x)(3+2x)`
`(3)^2 - (2x)^2`
`9- 2^2x^2`
`9-4x^2`
answer
321.

Evaluate : `15^(3)+10^(3)-25^(3)`

Answer» Let a=15, b=10 and c=-25
then a+b+c=15+10-25=0
We know that if a+b+c=0 then
`a^(3)+b^(3)+c^(3)=3abc`
Therefore , `15^(3)+10^(3)(-25)^(3)=3xx15xx10xx(-25)=-11250`
322.

Using identities find the values of the following : `(a) 102^(2) " " (b) 48^(2)`

Answer» (a) `102^(2)=(100+2)^(2)=100^(2)+2xx100xx2+2^(2)=10000+400+4=10404`
(b) `48^(2)=(50-2)^(2)=50^(2)-2xx50xx2+2^(2)=2500-200+4=2304`
323.

Maximum number toots of a cubic polynomial is …………… A) 2 B) 4 C) 3 D) 5

Answer»

Correct option is C) 3

324.

If the polynomial has only one zero its cuts X axis at ……………. point. A) 4 B) 2 C) 3D) 1

Answer»

Correct option is (D) 1

If polynomial has only one zero then it cuts X-axis at exactly one point.

Correct option is D) 1

325.

Use suitable identities to find the products of (1 + x) (1 + x)

Answer»

(1 + x) (1 + x) 

= (1 + x)2 = 12 + 2 (1) (x) + x2 

[∵(x + y)2 = x2 + 2xy + y2

= 1 + 2x + x2

326.

Evaluate the products without actual multiplication : 30.5 x 29.5

Answer»

= (30 + 0.5) (30 – 0.5) 

= 302 – (0.5)2

= 900 – 0.25 

= 899.75

327.

Use suitable identities to find the products of (x – 5) (x – 5)

Answer»

(x – 5) (x – 5) 

= (x – 5)2 = x2 – 2(x) (5) + 52 

[ ∵(x – y)2 = x2 – 2xy + y2

= x2 – 10x + 25

328.

Use suitable identities to find the products of (x + 5) (x + 2)

Answer»

(x + 5) (x + 2) 

= x2 + (5 + 2)x + 5 x 2 

[ ∵ (x + a) (x + b) = x2 + (a + b) x + ab] 

= x2 + 7x + 10

329.

Use suitable identities to find the products of (3x + 2) (3x – 2)

Answer»

(3x + 2) (3x – 2) = (3x)2 – (2)2 

[∵ (x + y) (x – y) =x – y ] 

= 9x2 – 4

330.

Evaluate the products without actual multiplication : 999 x 999

Answer»

999 x 999 

= 9992 

= (1000 – 1)2 

= 10002 – 2 x (1000) x 1 + 12 

= 1000000-2000 + 1 

= 998001

331.

Find the remainder when the polynomial f(x) = 2x4 - 2x2 - x + 2 is divided by x + 2.

Answer»

If  x + 2 = 0

x = -2

f(x) = 2x4 – 6x3 + 2x2 – x + 2, [By remainder theorem]

f(x) = 2(-2)4 – 6(-2)3 + 2(- 2)2 – (- 2) + 2

= 2(16) – 6(- 8) + 2(4) + 2 + 2

= 32 + 48 + 8 + 2 + 2 

= 92

Hence, required remainder = 92.

Given , Polynomial f(x) = 2x4 - 2x2 - x + 2 

g (x) = x + 2 = 0        x = -2 

Putting value of x in equation ,

f(-2) = 2x4 – 6x3 + 2x2 – x + 2, 

f(-2) = 2(-2)4 – 6(-2)3 + 2(- 2)2 – (- 2) + 2 

= 2(16) – 6(- 8) + 2(4) + 2 + 2 

= 32 + 48 + 8 + 2 + 2  = 92  

Hence, remainder = 92

332.

Evaluate the following using suitable identities:(102)3

Answer»

(102)3 = (100 + 2)3

= (100)3 + (2)3 + 3(100) (2) (100 + 2)

= 1000000 + 8 + 600 (102)

= 1000000 + 8 + 61200

= 1061208

333.

A linear polynomial from the following is ………………A) ax + b B) bx2 + c C) ax3 + bx2 + cx + e D) ax2 + bx + c

Answer»

Correct option is A) ax + b

334.

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : `p(x)=x^(6)-1, " " g(x)=x^(2)+1`

Answer» Correct Answer - `q(x)=x^(4)-x^(2)+1, " "r(x)=-2`
335.

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : `p(x)=x^(3)-7x^(2)-6x+1, " " g(x)=x-3`

Answer» Correct Answer - `q(x)=x^(2)-4x-18, " " r(x)=-53`
336.

Factorise:9x2 - 12xy + 4

Answer»

9x2 - 12 xy + 4

= (3x)2 - 2 x 3x x 2 + (2)2

= (3x - 2)2

= (3x  - 2) (3x  - 2)

337.

If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 +c2.

Answer»

Given (a + b + c) = 9 and (ab + bc + ca) = 26 

(a + b + c)2 = 92 

⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81 

⇒ a2 + b2 + c2 + 2(26) = 81 

⇒ a2 + b2 + c2 + 52 = 81 

⇒ a2 + b2 + c2  = 81 − 52 = 29

338.

If `P(x) =x+3,` then `p(x)+p(-x) ` is equal toA. 3B. 2xC. 0D. 6

Answer» Correct Answer - D
Given p(x) `=x+3,` put` x=-x` in the given equation ,
WE get `p(-x)=-x+3`
Now, `p(x) +p(-x)=x+3+(-x)+3=6`
339.

No. of zeroes of (x – 3)2 is ……………….. A) 4 B) 2 C) 3D) 1

Answer»

Correct option is (D) 1

\((x – 3)^2\) = 0

\(\Rightarrow\) x - 3 = 0 or x - 3 = 0

\(\Rightarrow\) x = 3 or x = 3

Number of different zeros = 1

Correct option is D) 1

340.

Zero of the polynomial `p(x) =2x+5 ` isA. `-(2)/(5)`B. `-(5)/(2)`C. `(2)/(5)`D. `(5)/(2)`

Answer» Correct Answer - B
Given `P(x) = 2x+5`
For zero of the polynomial ,put `p(x)=0`
`therefore " " 2x+5=0`
`implies " " x=-(5)/(2)`
Hence , zero of the polynomial `p(x) "is " (-5)/(2)`.
341.

The polynomial 2x – 1 cuts X axis at ………………. A) (-2, 0) B) (0, 1) C) (1/2 , 0) D) (-3, 0)

Answer»

Correct option is (C) (1/2, 0)

At x-axis, functional value (y-value) is zero.

\(\therefore\) 2x - 1 = 0

\(\Rightarrow\) \(x=\frac{1}{2}\)

Hence, polynomial 2x - 1 cut x-axis at \((\frac{1}{2}\,,0).\)

Correct option is C) ( 1/2, 0)

342.

Factorize the polynomials. (x – 3) (x – 4)2 (x – 5) – 6

Answer»

(x – 3) (x – 4)2 (x – 5) – 6 

= (x – 3) (x – 5) (x – 4)2 – 6 

= (x2 – 5x – 3x + 15) (x2 – 8x + 16) – 6 

= (x2 – 8x + 15) (x2 – 8x + 16) – 6 

= (m + 15) (m+ 16) – 6 … [Putting x2 – 8x = m]

 = m (m + 16) + 15 (m + 16) – 6 

= m2 + 16m + 15m + 240 – 6 

= m2 + 31m + 234 

= m2 + 18m + 13m + 234

= m(m + 18) + 13(m + 18) 

= (m + 18) (m + 13)

= (x2 – 8x + 18) (x2 – 8x + 13) … [Replacing m = x2 – 8x]

343.

Find the value of k, if x – 1 is a factor of p(x) in each of the following cases : (i) p(x) = x2 + x + k (ii) p(x) = 2x2 + kx + √2(iii) p(x) = kx2 – √2x + 1 (iv) p(x) = kx2 – 3x + k

Answer»

(i) p(x) = x2 + x + k 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = x2 + x + k 

p(1) = (1)2 + 1 + k 

p( 1) = 1 + 1 + k 

p( 1) = 2 + k 

If g(x) is a factor, then we have r(x) = 0 

∴ p(1) = 0 

2 + k= 0 

∴ k = 0 – 2 

k = -2 

(ii) p(x) = 2x2 + kx + √2

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = 2x2 + kx + √2

p(1) = 2(1)2 + k(1) + √2 

= 2(1) + k(l) + √2

p(1) = 2 + k + √2

If (x – 1) is the factor of p(x), then we have p(1) = 0. 

∴ 2 + k + = 0 k = -2 – √2 = 0

(iii) p(x) = kx2 – √2x + 1 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = kx2 – √2x + 1 

p(1) = k(1)2– √2(1) + 1 

= k( 1) – √2 + 1 

p(1) = k - √2 + 1 

If (x – 1) is the factor of p(x) then we have p(1) = 0. 

∴ p(1) = k – √2 + 1 = 0 

∴ k= √2 – 1 

(iv) p(x) = kx2 – 3x + k 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x – 1 

p(x) = kx2 – 3x + k 

p(1) = k(1)2 – 3(1) + k 

= k(1) – 3(1) + k 

= k – 3 + k p(1) 

= 2k – 3 

If (x – 1) is the factor of p(x), then we have p(1) = 0.

344.

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:(i) `p(x)=2x^3+x^2-2x-1,g(x)=x+1`(ii) `p(x)=x^3+3x^2+3x+1,g(x)=x+2`(iii) `p(x)=x^3+4x^2+x+6,g(x)=x-3`

Answer» From Factor theorem,
`(y-a)` is a factor of `P(y) if P(a) = 0.`

(i)`p(x) = 2x^3+x^2-2x-1 and g(x) = x+1`
For `g(x)` to be a factor of `p(x)`, `p(-1)` should be `0`.
`p(-1) = 2(-1)^3+(-1)^2-2(-1) -1 `
`=-2+1+2-1 =0`As, `p(-1)` is `0`, `(x+1)` is a factor of `p(x)`.

(ii) `p(x) = x^3+3x^2+3x+1 and g(x) = x+2`
For `g(x)` to be a factor of `p(x)`, `p(-2)` should be `0`.
`p(-2) = (-2)^3+3(-2)^2+3(-2)+1`
`=-8+12-6+1 = -1`
As, `p(-2)` is not equal to `0`, `(x+2)` is not a factor of `p(x)`.

(iii) `p(x) = x^3+4x^2+x+6 and g(x) = x-3`
For `g(x)` to be a factor of `p(x)`, `p(-3)` should be `0`.
`p(3) = (3)^3+4(3)^2+3+6`
`=27+36+3+6=72`
As, `p(3)` is not equal to `0`, `(x-3)` is not a factor of `p(x)`.

345.

From the polynomial p(x) = 2x – 3x +1, find p(0), p(1) and p(-1).

Answer»

p(x) = 2x2 – 3x + 1

p(0) = 2(0)2 – 3(0) + 1 = 1

p(1) = 2(1)2 – 3(1) +1 = 2 – 3 + 1 = 0

p(-1) = 2(-1)2 – 3(-1) + 1 = 2 + 3 + 1 = 6

346.

If (x4 + ax3 – 7x2 – 8x + b) is completely divisible by (x2 + 5x + 6). Then the values of a and b are.................A) a = 2, b = 8B) a = -2, b = 6C) a = 2, b = 12D) a = 2, b = 14

Answer»

Correct option is (C) a = 2, b = 12

Given that polynomial \((x^4+ax^3-7x^2-8x+b)\) is completely divisible by \((x^2+5x+6).\)

If implies that \((x^2+5x+6)\) is a factor of \((x^4+ax^3-7x^2-8x+b).\)

\(\Rightarrow\) (x + 2) & (x + 3) are factors of \((x^4+ax^3-7x^2-8x+b)\)

\(\Rightarrow\) x = -2 & x = -3 are zeros of polynomial \((x^4+ax^3-7x^2-8x+b)\)

\(\therefore(-2)^4+a(-2)^3-7(-2)^2-8(-2)+b=0\)

and \((-3)^4+a(-3)^3-7(-3)^2-8(-3)+b=0\)

\(\Rightarrow\) 16 - 8a - 28 + 16 + b = 0 and 81 - 27a - 63 + 24 + b = 0

\(\Rightarrow\) 8a - b = 4 and 27a - b = 42

\(\Rightarrow\) (27a - b) - (8a - b) = 42 - 4

\(\Rightarrow\) 19a = 38

\(\Rightarrow\) a = \(\frac{38}{19}\) = 2

\(\therefore\) b = 8a - 4 = 16 - 4 = 12

Correct option is C) a = 2, b = 12

347.

Find the value of k, if x-1 is a factor of p(x) in each of the following cases : (i) `p(x)=x^(2)+x+k " " (ii) p(x)=2x^(2)+kx+sqrt(2)` (iii) `p(x)=kx^(2)-sqrt(2)x+1 " " (iv) p(x) =kx^(2)-3x+k`

Answer» The zero of x-1 is 1.
(i) `because (x-1)` is a factor of p(x), then p(1)=0
`implies 1^(2)+1+k=0 " " [because p(x)=x^(2)+x+k]`
`implies 2+k=0`
`implies k=-2`
(ii) `because (x-1)` is a factor of p(x), then p(1)=0
`implies 2(1)^(2)+k(1)+sqrt(2)=0 " " [because p(x)=2x^(2)+kx+sqrt(2)]`
`implies 2+k+sqrt(2)=0`
`implies k=-(2+sqrt(2))`
(iii) `because (x-1)` is a factor of p(x), then p(1)=0
`implies k(1)^(2)-sqrt(2)+1=0 " " [because p(x)=kx^(2)-sqrt(2)+1]`
`implies k=(sqrt(2)-1)`
(iv) `because (x-1)` is a factor of p(x), then p(1)=0
`implies k(1)^(2)-3+k=0 " " [because p(x)=kx^(2)-3x+k]`
`implies 2k-3=0`
`implies k=(3)/(2)`
348.

x3 + 2x2 + ax + b is exactly divisible by (x2 – 1). The values of a and b is ……………… A) a = -1, b = 2B) a = 1, b = -2C) a = 1, b = 2D) a = -1, b = -2

Answer»

Correct option is (D) a = -1, b = -2

(x - 1) and (x + 1) are factors of \((x^3+2x^2+ax+b).\)

\(\Rightarrow\) x = 1 and x = -1 are zeros of \((x^3+2x^2+ax+b).\)

\(\therefore\) 1+2+a+b = 0 and -1+2-a+b = 0

\(\Rightarrow\) a+b = -3 and a - b = 1

\(\Rightarrow\) (a+b) + (a - b) = -3+1

\(\Rightarrow\) 2a = -2

\(\Rightarrow\) a = \(\frac{-2}2\) = -1

Then b = - 3 - a = -3 - (-1)

= -3+1 = -2

Correct option is D) a = -1, b = -2

349.

If `3x+4:x+5` is the duplicate ratio of `8:15,` find `x.`

Answer» As `(3x+4):(x+5)` is duplicate ratio of `8:15`.
`:. (3x+4)/(x+5) = 8^2/15^2 = 64/225`
`=675x+900 = 64x+320`
`=>611x = -580`
`=> x = -580/611`
350.

If g(x) = x6 + 3x4 – 24x2 + 3 find g(1), g(2) and g(3). A) g(1) = -17, g(2) = 19, g(3) = 759 B) g(1) = 12, g(2) = 19, g(3) = 758 C) g(1) = -12, g(2) = -19, g(3) = -759D) g(1) = -12, g(2) = -19, g(3) = 759

Answer»

Correct option is (A) g(1) = -17, g(2) = 19, g(3) = 759

\(\because g(x)=x^6+3x^4-24x^2+3\)

\(\therefore\) g(1) = 1+3-24+3 = -17,

\(g(2)=2^6+3.2^4-24.2^2+3\)

= 64 + 48 - 96 + 3

= 115 - 96 = 19 and

\(g(3)=3^6+3.3^4-24.3^2+3\)

= 729 + 243 - 216 + 3

= 975 - 216

= 759

Correct option is A) g(1) = -17, g(2) = 19, g(3) = 759