Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

Which one of the following is one of the factors of x2 (y – z) + y2 (z – x) – z (xy – yz – zx) ?(a) (x – y) (b) (x + y – z) (c) (x – y – z) (d) (x + y + z)

Answer»

(c) (x – y – z)

x2 (y – z) + y2 (z – x) – z(xy – yz – zx) 

= x2y – x2z + y2z – y2x – zxy + yz2 + z2

= xy(x – y – z) + z2(x + y) – z (x2 – y2

= xy(x – y – z) – z (x + y) (x – y – z) = (x – y – z) (xy – yz – zx) 

Hence, (c) is the correct option.

352.

Divide the number 24 into two parts such that the ratio of their product to the sum of their squares is 3:10

Answer» according to question`(x*(24-x))/(x^2+(24-x)^2)=3/10`
`10x(24-x)=3x^2+3(24-x)^2`
`16x^2-384x+1728=0`
`16(x^2-24x+108)=0`
`x(x-18)-6(x-18)=0`
`(x-6)(x-18)=0`
`x=6,18`
so the required numbers are 6 and 18.
353.

If the HCF of (x2 + x – 12) and (2x2 – kx – 9) is (x – k), then what is the value of k ?

Answer»

Since (x – k) is the HCF of (x2 + x + 12) and (2x2 – kx – 9) 

(x – k) will be a factor of 2x2 – kx – 9 

∴ 2.k2 – k.k – 9 = 0 ⇒ k2 – 9 = 0 ⇒ k = ± 3 

Also, the factors of (x2 + x – 12) = (x + 4) (x – 3) ∴ k = 3.

354.

Find p(0), p(1) and p(-2) for the following polynomials(i) p(x) = 10x – 4x2 – 3 (ii) p(y) = (y + 2)(y – 2)

Answer»

(i) Given, polynomial is

p(x) = 10x – 4x2 – 3

On putting x = 0,1 and – 2, respectively in Eq. (i),

we get p(0) = 10(0)-4(0)2 -3 

= 0-0-3 

= -3

p(1) = 10 (1) - 4 1)2 -3

= 10-4-3

= 10-7

= 3

and p(-2) =10 (-2)- 4 (-2)2 – 3

= -20-4×4-3 =-20-16-3=-39

Hence, the values of p(0), p(1) and p(-2) are respectively, -3,3 and – 39.

(ii) Given, polynomial is p(y) = (y+2)(y-2)

On putting y =0,1 and -2, respectively in Eq. (i), we get p(0) =(0+2)(0-2)= -4

p(1) = (1 + 2)(1-2)

= 3 x (-1) = -3

and p(-2) = (-2 + 2)(-2 -2)

=0 (-4) = 0

Hence, the values of p(0),p(1) and p(-2) are respectively,-4,-3 and 0.

355.

Find the least number which when divided by 16, 18, 20 and 25 leaves 4 as remainder in each case, but when divided by 7 leaves no remainder.

Answer» First we have to find the LCM of `16,18,20 and 25`.
`16 = 2^4`
`18 = 2*3^2`
`20= 2^2*5`
`25 = 5^2`
so, LCM of these numbers will be `=2^4*3^2*5^2 = 3600`
Let the required number is `x`.
Then, `x = n**3600+4`
`=>x = n**(514**7+2)+4`
`=>x = 514**7n + (2n+4)`
If we divide `x` by `7`, then remainder should be `0`.
`:. (2n+4)/7` should have remainder `0`.
Minimum value for `n` to meet this condition is `5`.
So, required number will be `= 5**3600+4 = 18004`
356.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:q(y) = 7y2 – (11/3)y – 2/3

Answer»

Given, 

q(y) = 7y2 – (11/3)y – 2/3 

We put q(y) = 0 

⇒ 7y2 – (11/3)y – 2/3 = 0 

⇒  (21y2 – 11y -2)/3 = 0 

⇒ 21y2 – 11y – 2 = 0 

⇒ 21y2 – 14y + 3y – 2 = 0

 ⇒ 7y(3y – 2) – 1(3y + 2) = 0 

⇒ (3y – 2)(7y + 1) = 0 

This gives us 2 zeros, for 

y = 2/3 and y = -1/7 

Hence, the zeros of the quadratic equation are 2/3 and -1/7. 

Now, for verification 

Sum of zeros = – coefficient of y / coefficient of y2 

2/3 + (-1/7) = – (-11/3) / 7 

-11/21 = -11/21 

Product of roots = constant / coefficient of y2 

2/3 x (-1/7) = (-2/3) / 7 

– 2/21 = -2/21 

Therefore, the relationship between zeros and their coefficients is verified.

357.

When x13 + 1 is divided by x –1, the remainder is :(a) 1 (b) –1 (c) 0 (d) 2 

Answer»

(d) 2

Remainder when x13 + 1 is divided by (x – 1) = 113 + 1 = 2.

358.

A cubic polynomial f(x) is such that f(1) = 1, f(2) = 2, f(3) = 3 and f(4) = 5, then f(6) equals :(a) 7 (b) 6 (c) 10 (d) 13

Answer»

(b) 6

Let the cubic polynomial be : 

f(x) = ax3 + bx2 + cx + d. 

Given, f(1) = 1 ⇒ a + b + c + d = 1            ....(i) 

f(2) = 2 ⇒ 8a + 4b + 2c + d = 2                ...(ii) 

f(3) = 4 ⇒ 27a + 9b + 3c + d = 3             ...(iii) 

f(4) = 5 ⇒ 125a + 25b + 5c + d = 5        ...(iv) 

(ii) – (i) ⇒ 7a + 3b + c = 1                       ...(v) 

(iii) – (ii) ⇒ 19a + 5b + c = 1                  ...(vi) 

(iv) – (iii) ⇒ 98a + 16b + 2c = 2           ...(vii) 

(vi) – (v) ⇒ 12a + 2b = 0 ⇒ 6a + b = 0           ...(viii) 

(vii) – 2 (vi) ⇒ 60a + 6b = 0 ⇒ 10a + b = 0           ...(ix) 

Solving (viii) and (ix), we get a = 0 ⇒ b = 0 

Putting a = 0, b = 0 in (v), we, get c = 1 

Also from (i), a = 0, b = 0, c = 1 ⇒ d = 0.

Putting values of a, b, c, d in f(x) = ax3 + bx2 + cx + d, we get the polynomial f(x) = x ⇒ f(6) = 6.

359.

(xn – an) is divisible by (x – a)(a) for all values of n (b) for even values of n (c) for odd values of n (d) only for prime values of n

Answer»

Answer is:

(a) for all values of n 

360.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:p(y) = y2 + (3√5/2)y – 5

Answer»

Given, 

p(y) = y2 + (3√5/2)y – 5 

We put f(v) = 0 

⇒ y2 + (3√5/2)y – 5 = 0 

⇒  y2 – √5/2 y + 2√5y – 5 = 0 

⇒ y(y – √5/2) + 2√5 (y – √5/2) = 0 

⇒ (y + 2√5)(y – √5/2) = 0 

This gives us 2 zeros, for 

y = √5/2 and y = -2√5 

Hence, the zeros of the quadratic equation are √5/2 and -2√5. 

Now, for verification 

Sum of zeros = – coefficient of y / coefficient of y2 

√5/2 + (-2√5) = – (3√5/2) / 1 

-3√5/2 = -3√5/2 

Product of roots = constant / coefficient of y2 

√5/2 x (-2√5) = (-5) / 1 

– (√5)2 = -5 

-5 = -5 

Therefore, the relationship between zeros and their coefficients is verified.

361.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:f(x) = x2 – (√3 + 1)x + √3

Answer»

Given, 

f(x) = x2 – (√3 + 1)x + √3 

We put f(x) = 0 

⇒ x2 – (√3 + 1)x + √3 = 0 

⇒  x2 – √3x – x + √3 = 0 

⇒ x(x – √3) – 1 (x – √3) = 0 

⇒ (x – √3)(x – 1) = 0 

This gives us 2 zeros, for 

x = √3 and x = 1 

Hence, the zeros of the quadratic equation are √3 and 1. 

Now, for verification 

Sum of zeros = – coefficient of x / coefficient of x2 

√3 + 1 = – (-(√3 +1)) / 1 

√3 + 1 = √3 +1 

Product of roots = constant / coefficient of x2 

1 x √3 = √3 / 1 

√3 = √3 

Therefore, the relationship between zeros and their coefficients is verified.

362.

If x + y + z = 0, then what is the value of : \(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)?(a)\(\frac{1}{x^2+y^2+z^2}\)(b) 1 (c) –1 (d) 0

Answer»

(d) 0

Given, x + y + z = 0 ⇒ x + y = – z 

⇒ x2 + y2 + 2xy = z2 ⇒ x2 + y2 = z2 – 2xy

∴ \(\frac{1}{x^2+y^2-z^2} = \frac{1}{z^2-2xy-z^2}=\frac{1}{-2xy}=-\frac{1}{2xy}\)

Similarly, \(\frac{1}{y^2+z^2-x^2} = -\frac{1}{2xy}\) and \(\frac{1}{z^2+x^2-y^2}=-\frac{1}{2zx}\)

∴ \(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)

\(-\frac{1}{2xy}-\frac{1}{2yz}-\frac{1}{2zx}\) = \(-\frac{1}{2}\big[\frac{z+x+y}{xyz}\big]\) = 0.                   [ x + y + z = 0]

363.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:g(x) = a(x2 + 1) –x (a2 + 1)

Answer»

Given, 

g(x) = a(x2+1) – x(a2+1) 

We put g(x) = 0 

⇒ a(x2+1)–x(a2+1) = 0 

⇒ ax2 + a − a2x – x = 0 

⇒ ax2 − a2x – x + a = 0 

⇒ ax(x − a) − 1(x – a) = 0 

⇒ (x – a)(ax – 1) = 0 

This gives us 2 zeros, for 

x = a and x = 1/a 

Hence, the zeros of the quadratic equation are a and 1/a. 

Now, for verification 

Sum of zeros = – coefficient of x / coefficient of x2 

a + 1/a = – (-(a2 + 1)) / a 

(a2 + 1)/a = (a2 + 1)/a 

Product of roots = constant / coefficient of x2 

a x 1/a = a / a 

1 = 1 

Therefore, the relationship between zeros and their coefficients is verified.

364.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:f(v) = v2 + 4√3v – 15

Answer»

Given, 

f(v) = v2 + 4√3v – 15 

We put f(v) = 0 

⇒ v2 + 4√3v – 15 = 0 

⇒  v2 + 5√3v – √3v – 15 = 0 

⇒ v(v + 5√3) – √3 (v + 5√3) = 0 

⇒ (v – √3)(v + 5√3) = 0 

This gives us 2 zeros, for 

v = √3 and v = -5√3 

Hence, the zeros of the quadratic equation are √3 and -5√3. 

Now, for verification 

Sum of zeros = – coefficient of v / coefficient of v2 

√3 + (-5√3) = – (4√3) / 1 

-4√3 = -4√3 

Product of roots = constant / coefficient of v2 

√3 x (-5√3) = (-15) / 1 

-5 x 3 = -15 

-15 = -15 

Therefore, the relationship between zeros and their coefficients is verified.

365.

If \(x+\frac{1}{x}\) = p, then \(x^6+\frac{1}{x^6}\) equals to :(a) p6 + 6p (b) p6 – 6p (c) p6 + 6p4 + 9p2 + 2 (d) p6 – 6p4 + 9p2 – 2

Answer»

(d) p6 – 6p4 + 9p2 – 2

Given, \(x+\frac{1}{x}\) = p          ⇒ \(\bigg(x+\frac{1}{x}\bigg)^2\) = p2

⇒ \(x^2+\frac{1}{x^2}+2 = p^2\)    ⇒ \(x^2+\frac{1}{x^2} = p^2 - 2\)

⇒ \(\bigg(x^2+\frac{1}{x^2}\bigg)^3\) = (p2 - 2)3

⇒  \(x^6+\frac{1}{x^6}\) + 3\(\bigg(x^2+\frac{1}{x^2}\bigg)\) = p6 - 8 + 6p2 (p2 - 2)

⇒ \(x^6+\frac{1}{x^6}\) + 3 (p2 - 2) = p6 - 8 + 6p2 (p2 - 2)

⇒ \(x^6+\frac{1}{x^6}\) = p6 - 6p- 9p2 - 2

366.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:h(s) = 2s2 – (1 + 2√2)s + √2

Answer»

Given, 

h(s) = 2s2 – (1 + 2√2)s + √2 

We put h(s) = 0 

⇒ 2s2 – (1 + 2√2)s + √2 = 0 

⇒  2s2 – 2√2s – s + √2 = 0 

⇒ 2s(s – √2) -1(s – √2) = 0 

⇒ (2s – 1)(s – √2) = 0 

This gives us 2 zeros, for 

x = √2 and x = 1/2 

Hence, the zeros of the quadratic equation are √3 and 1. 

Now, for verification 

Sum of zeros = – coefficient of s / coefficient of s2 

√2 + 1/2 = – (-(1 + 2√2)) / 2 

(2√2 + 1)/2 = (2√2 +1)/2 

Product of roots = constant / coefficient of s2 

1/2 x √2 = √2 / 2 

√2 / 2 = √2 / 2 

Therefore, the relationship between zeros and their coefficients is verified.

367.

If the sum and difference of two expressions are 5a2 – a – 4and a2 + 9a – 10 respectively, then what is their LCM ?

Answer»

Let P and Q be the two expressions. Then, 

P + Q = 5a2 – a – 4                            ...(i) 

P – Q = a2 + 9a – 10                         ...(ii) 

Adding (i) and (ii) 

⇒ 2P = 6a2 + 8a – 14 ⇒ P = 3a2 + 4a – 7 = (a – 1) (3a + 7) 

From (i), Q = (5a2 – a – 4) – (3a2 + 4a – 7) = 2a2 – 5a + 3 = (a – 1) (2a – 3)

∴ LCM of P and Q = (a – 1) (2a – 3) (3a + 7).

368.

If ax = (x + y + z)y , ay = (x + y + z)z , az = (x + y + z)x , then:(a) 3(x + y + z) = a (b) 2a = x + y + z (c) x + y + z = 0 (d) x = y = z = a/3

Answer»

(d) \(\frac{a}{3}.\)

ax . ay . az = (x + y + z)x + y + z 

⇒ ax + y + z = (x + y + z)x + y + z 

⇒ a = (x + y + z) 

Now, (x + y + z)y = ax (given) 

⇒ (x + y + z)y = (x + y + z)x ⇒ y = x 

Similarly, y = z and z = x.

∴ x = y = z = \(\frac{x+y+z}{3}\) = \(\frac{a}{3}.\)

369.

If \(\frac{1}{y+z}+\frac{1}{z+x} = \frac{2}{x+y}\) then what is (x2 + y2) equal to ?

Answer»

\(\frac{1}{y+z}+\frac{1}{z+x} = \frac{2}{x+y}\)

⇒ \(\frac{1}{y+z}+\frac{1}{x+z} \) = \(\frac{1}{x+y}+\frac{1}{z+x} \) ⇒ \(\frac{(x+y)-(y+z)}{(y+z)(x+y)}\) = \(\frac{(z+x)-(x+y)}{(x+y)(z+x)}\)

⇒ \(\frac{x-z}{y+z} = \frac{z-y}{z+x}\) ⇒ (x-z)(x+z) = (z-y)(z+y)

⇒ x2 – z2 = z2 – y2 ⇒ x2 + y2 = 2z2.

370.

If \(x+\frac{1}{x}=a\),  then what is the value of x3 + x2 + \(\frac{1}{x^3}+\frac{1}{x^2}\) ?(a) a3 + a2 (b) a3 + a2  – 5a (c) a3 + a2  – 3a – 2 (d) a3 + a2 – 4a – 2

Answer»

(c) a3 + a2  – 3a – 2

Given, \(x+\frac{1}{x}=a\) 

Now,  x3 + x2 + \(\frac{1}{x^3}+\frac{1}{x^2}\) = \(\big(x^3+\frac{1}{x^3}\big)\)\(\big(x^2+\frac{1}{x^2}\big)\)

\(\big(x+\frac{1}{x}\big)^3\) - 3\(\big(x+\frac{1}{x}\big)\) + \(\big(x+\frac{1}{x}\big)^2\) - 2

= a3 – 3a + a2 – 2 = a3 + a2 – 3a – 2.

371.

If x = \(\frac{a-b}{a+b},\) y = \(\frac{b-c}{b+c},\) z= \(\frac{c-a}{c+a},\) then what is the value of \(\frac{1+x}{1-x}\) . \(\frac{1+y}{1-y}\) . \(\frac{1+z}{1-z}\)?

Answer»

x = \(\frac{a-b}{a+b}\) ⇒ \(\frac{1}{x}\) = \(\frac{a+b}{a-b}\)

⇒ \(\frac{1+x}{1-x}\) = \(\frac{a+b+a-b}{a+b-a+b}\) = \(\frac{2a}{2b}\) ⇒ \(\frac{1+x}{1-x}\) = \(\frac{a}{b}\)          (Applying componendo and dividendo)

Similarly, \(\frac{1+y}{1-y}\) = \(\frac{b}{c}\)\(\frac{1+z}{1-z}\) = \(\frac{c}{a}\) ∴ \(\frac{1+x}{1-x}\) . \(\frac{1+y}{1-y}\) . \(\frac{1+z}{1-z}\) = \(\frac{a}{b}\).\(\frac{b}{c}\).\(\frac{c}{a}\) = 1.

372.

If \(\frac{x}{(b-c)(b+c-2a)}=\frac{y}{(c-a)(c+a-2b)}=\frac{z}{(a-b)(a+b-2c)}\) , what is the value of x + y + z ?(a) (a + b + c) (b) a2 + b2 + c2 (c) 0 (d) 1

Answer»

(c) 0

Let \(\frac{x}{(b-c)(b+c-2a)}=\frac{y}{(c-a)(c+a-2b)}=\frac{z}{(a-b)(a+b-2c)}\) = k.

Then, x = k(b – c) (b + c – 2a) 

y = k(c – a) (c + a – 2b) 

z = k(a – b) (a + b – 2c) 

∴ x + y + z = k(b – c) (b + c – 2a) + k(c – a) (c + a – 2b) + k(a – b) (a + b – 2c) 

= k(b2 – c2 – 2ab + 2ca) + k(c2 – a2 – 2bc + 2ab) + k (a2 – b2 – 2ca + 2bc) 

= k(b2 – c2 – 2ab + 2ca + c2 – a2 – 2bc + 2ab + a2 – b2 – 2ca + 2bc) 

= k × 0 = 0.

373.

If a + b + c = 0, then what is the value of a4 + b4 + c4 – 2a2b2 – 2b2c2 – 2c2a2 ?

Answer»

Given, a + b + c = 0. 

Now, a4 + b4 + c4 – 2a2b2 – 2b2c2 – 2c2a2 = (a2 + b2 + c2)2 – 4a2b2 – 4b2c2 – 4c2a2 

= [(a + b + c)2 – 2ab – 2bc – 2ca]2 – 4a2b2 – 4b2c2 – 4c2a2 

= [02 – 2ab – 2bc – 2ca]2 – 4a2b2 – 4b2c2 – 4c2a2 

= 4a2b2 + 4b2c2 + 4c2a2 + 8ab2c + 8abc2 + 8a2bc – 4a2b2 – 4b2c2 – 4c2a2 

= 8ab2c + 8abc2 + 8a2bc = 8abc (b + c + a) = 8abc. 0 = 0.

374.

Factorise `y^2-5y+6`by using the Factor Theorem.

Answer» Here, we have to factorise `P(y) = y^2 - 5y +6`
Now,`(y-a)(y-b) = y^2 - by - ay + ab`Comparing above expression with given equation,
`ab = 6`
So,possible values are `(1,6),(-1,-6),(2,3),(-2,-3)`.
So, possibilities are `+-1,+-2,+-3,+-6`
Now, from Factor theoram,
`(y-a)` is a factor of `P(y) if P(a) = 0`
Now, we can check P(y) for all possible values.
`P(1) = 1-5+6 = 2`
`P(2) = 4-10+6 = 0`
`P(3) = 9-15+6 = 0`
`P(6) = 36-30+6 = 12`
So, only `P(2)` and `P(3)` are `0` as all negative values results in positive values of `P(y)`.
So, factor of `P(y) = (y-2)(y-3)`
375.

Find the following products using appropriate identities:`(i) (x+3) (x+3) (i i) (x 3)(x+5)`

Answer» `(i) (x+3)(x+3) = (x+3)^2`
As, `(a+b)^2 = a^2+2ab+b^2`
` (x+3)^2=x^2+2*3*x+3^2==x^2+6x+9`

`(ii) (x-3)(x+5) = (x+(-3))+(x+5)`
As,`(x+a)(x+b) = x^2+(a+b)x +ab`
`(x+(-3))+(x+5) = x^2+(-3+5)x+(-3)(5)`
`=x^2+2x-15`
376.

It is given that the difference between the zeroes of 4x2 – 8kx + 9 is 4 and k > 0. Then, k = ?(a) \(\frac{1}2\) (b) \(\frac{3}2\)(c) \(\frac{5}2\)(d) \(\frac{7}2\)

Answer»

(c) \(\frac{5}2\)

Let the zeroes of the polynomial be α and α + 4 

Here, p(x) = 4x2 – 8kx + 9 

Comparing the given polynomial with ax2 + bx + c, 

we get: 

a = 4, b = -8k and c = 9

Now, sum of the roots = \(\frac{-b}a\)

⇒ α + α + 4 = \(\frac{-(-8)}4\)

⇒ 2α + 4 = 2k 

⇒ α + 2 = k 

⇒ α = (k – 2) ….(i) 

Also, product of the roots, αβ = \(\frac{c}a\)

⇒ α (α + 4) = \(\frac{9}4\)

⇒ (k – 2) (k – 2 + 4) = \(\frac{9}4\)

⇒ (k – 2) (k + 2) = \(\frac{9}4\)

⇒ k2 – 4 = \(\frac{9}4\)

⇒ 4k2 – 16 = 9 

⇒ 4k2 = 25

⇒ k2 \(\frac{25}4\)

⇒ k = \(\frac{5}4\)

(∵ k >0)

377.

If one of the zero of the quadratic polynomial f(x) = 4x2 – 8kx – 9 is negative of the other, then find the value of k.

Answer»

From the question, it’s given that: 

The quadratic polynomial f(x) where a = 4, b = -8k and c = – 9 

And, for roots to be negative of each other, let the roots be α and – α. 

Sum of the roots = α – α = \(\frac{-b}{a}\) 

= – \(\frac{(-8k)}{1}\) 

= 8k = 0 [∵ α – α = 0] 

⇒ k = 0

378.

If `alpha, beta` are the zeros of `kx^(2)-2x+3k` such that `alpha+beta = alpha beta ` then `k = ? `A. `1/3`B. ` (-1)/3`C. ` 2/3`D. `(-2)/3`

Answer» Correct Answer - C
379.

It is given that the difference between the zeros of `4x^(2)-8kx+9` is 4 and ` k gt 0`. Then, k = ?A. `1/2`B. `3/2`C. `5/2`D. `7/2`

Answer» Correct Answer - C
380.

Find the zeroes of the polynomial x2 + 2x – 195.

Answer»

Here, p(x) = x2 + 2x – 195 

Let p(x) = 0 

⇒ x2 + (15 – 13)x – 195 = 0 

⇒ x2 + 15x – 13x – 195 = 0 

⇒ x (x + 15) – 13(x + 15) = 0 

⇒ (x + 15) (x – 13) = 0 

⇒ x = –15, 13 

Hence, 

the zeroes are –15 and 13.

381.

Find the zeros of the polynomial ` x^(2) + 2x - 195.`

Answer» Correct Answer - `-15, 13`
382.

Which of the following graph has more than three distinct real roots?

Answer»

The correct option is: (C)

Explanation:

For more than three distinct real roots the graph must cut x-axis at least four times. So, graph in option (C) has more than three distinct real roots.

383.

If α and β are the zeros of the quadratic polynomial such that α + β = 24 and α - β = 8, find a quadratic polynomial having α and β as its zeros.

Answer»

A quadratic equation when sum and product of its zeros is given by:

f(x) = k{x2 - (sum of zeros)x + product of the zeros},

where k is a constant

α + β = 24 ....(1)

α - β = 8 ....(2)

Adding 1 and 2 we get,

α + β + α - β = 24 + 8

⇒ 2α = 32

⇒ α = 16

Substitute value in 1 to get

16 + β = 24

⇒ β = 24 -16

⇒ β = 8

α = 16 and β = 8

f(x) = k{x2 - (24)x + 16 × 8}

f(x) = k(x2 - 24x + 128)

If we will put the different values of k,

we will find the different quadratic equations.

384.

What will be the value of p(3), if 3 is one of zeroes of polynomial p(x) = x3 + bx + D?(A) 3 (B) D (C) 27 (D) 0

Answer»

The correct option is: (D) 0

Explanation:

Since, 3 is one of the zeroes of polynomial p(x). So, p(3) = 0

385.

When x3 - 3x2 + 3x + 5 is divided by x2 - x + 1, the quotient and remainder are .......(A) x + 2, 7(B) x - 2, -7(C) x - 2, 7(D) x + 2, -7

Answer»

When x3 - 3x2 + 3x + 5 is divided by x2 - x + 1, the quotient and remainder are x - 2, 7.

386.

If α and β are the zeros of the quadratic polynomial p(x) = 4x2 – 5x – 1, find the value of α2β + αβ2.

Answer»

From the question, it’s given that: 

α and β are the roots of the quadratic polynomial p(x) where a = 4, b = -5 and c = -1 

Sum of the roots = α+β = \(\frac{-b}{a}\) 

= – \(\frac{(-5)}{4}\)

= \(\frac{5}{4}\) 

Product of the roots = αβ = \(\frac{c}{a}\)

= \(\frac{-1}{4}\) 

α2β + αβ2 

⇒ αβ(α +β) 

⇒ (\(\frac{-1}{4}\))(\(\frac{5}{4}\)

= \(\frac{-5}{16}\)

387.

If the sum of the zeroes of the quadratic polynomial f(t) = kt2 + 2t + 3k is equal to their product, then find the value of k.

Answer»

Given, 

The quadratic polynomial f(t) = kt2 + 2t + 3k, where a = k, b = 2 and c = 3k. 

And,

Sum of the roots = Product of the roots 

⇒ (-b/a) = (c/a) 

⇒ (-2/k) = (3k/k) 

⇒ (-2/k) = 3 

∴ k = -2/3

388.

Find the values of “a” and “b” so that (x + 2) and (x – 1) may be factors of x3 + 10x2 + ax + b. A) a = 7,b = -18 B) a = 7, b = -17 C) a = 7, b = -15 D) a = 7, b = 17

Answer»

Correct option is (A) a = 7, b = -18

\(\because\) (x + 2) and (x – 1) are factors of \(x^3 + 10x^2 + ax + b.\)

\(\Rightarrow\) x = -2 and x = 1 are zeros of \(x^3 + 10x^2 + ax + b.\)

\(\therefore\) \((-2)^3+10.(-2)^2+a\times-2+b=0\) and 1+10+a+b = 0

\(\Rightarrow\) -8+40-2a+b = 0 and b = -a - 11

\(\Rightarrow\) 32 - 2a - a - 11 = 0

\(\Rightarrow\) 3a = 32 - 11 = 21

\(\Rightarrow\) a = \(\frac{21}3\) = 7

\(\therefore\) b = -a - 11 = -7 - 11 = -18

Correct option is A) a = 7,b = -18

389.

Find the value of k if the expressions p(x) = kx3 + 4x2 + 3x – 4 and q(x) = x3 – 4x + k leave the same remainder when divided by (x – 3) A) k = -1 B) k = 4 C) k = 3 D) k = -2

Answer»

Correct option is (A) k = -1

p(3) = q(3)

\(\Rightarrow\) 27k+36+9-4 = 27 - 12 + k

\(\Rightarrow\) 26k + 41 - 15 = 0

\(\Rightarrow\) 26k = 15 - 41 = -26

\(\Rightarrow\) k = \(\frac{-26}{26}\) = -1

Correct option is A) k = -1

390.

The equation whose roots are obtained by adding 1 to those of 2x2 + 3x + 5 = 0 is A) 2x2 – x – 4 = 0 B) 2x2 + x – 4 = 0 C) 2x2 – x + 4 = 0 D) None

Answer»

Correct option is (C) 2x2 – x + 4 = 0

Let \(\alpha\;and\;\beta\) are root of \(2x^2+3x+5=0\)

\(\therefore\) \(\alpha+\beta\) \(=\frac{-3}2\) and \(\alpha\beta\) \(=\frac{5}2\)

Now, \((\alpha+1)+(\beta+1)\) \(=\alpha+\beta+2\) \(=\frac{-3}2+2\) \(=\frac{-3+4}2=\frac12\)

and \((\alpha+1)(\beta+1)\) \(=\alpha\beta+\alpha+\beta+1\) \(=\frac52-\frac32+1\) = 1+1 = 2

\(\therefore\) Equation whose roots are \((\alpha+1)\;and\;(\beta+1)\) is \(x^2-((\alpha+1)+(\beta+1))x+(\alpha+1)(\beta+1)=0\)

\(\Rightarrow\) \(x^2-\frac x2+2=0\)

\(\Rightarrow\) \(2x^2-x+4=0\)

\(\therefore\) Required equation is \(2x^2-x+4=0.\)

Correct option is C) 2x2 – x + 4 = 0

391.

If 4x2 – 6x + m is divisible by x – 3, which one of the following is the greatest divisor of m ?(a) 9 (b) 12 (c) 18 (d) 36

Answer»

(c) 18

If f(x) = 4x2 – 6x + m is divisible by (x – 3), then f(3) = 0 

⇒ 4 (3)2 – 6.3 + m = 0 ⇒ 36 – 18 + m = 0 ⇒ m = –18. 

The greatest divisor of m = 18.

392.

Find the quadratic polynomial, sum of whose zeroes is 0 and their product is -1. Hence, find the zeroes of the polynomial.

Answer»

Let α and β be the zeroes of the required polynomial f(x). 

Then (α + β) = 0 and αβ = -1 

∴f(x) = x2 ˗ (α + β)x + αβ

⇒ f(x) = x2 ˗ 0x + (-1) 

⇒ f(x) = x2 ˗ 1 

Hence, 

required polynomial f(x) = x2 ˗ 1. 

∴f(x) = 0 ⇒ x2 ˗ 1 = 0 

⇒ (x + 1) (x – 1) = 0 

⇒ (x + 1) = 0 or (x – 1) = 0 

⇒ x = -1 or x = 1 

So, the zeroes of f(x) are -1 and 1.

393.

Find the quadratic polynomial whose zeroes are 2 and -6. Verify the relation between the coefficients and the zeroes of the polynomial.

Answer»

Let ∝ = 2 and β = -6

Sum of the zeroes = (∝ + β) = 2 – 6 = -4

Product of the zeroes, = 2(-6) = -12

Required quadratic polynomial is

x2 – (∝+β)x + ∝β 

= x2 – (-4)x – 12

= x2 + 4x – 12

And,

Sum of the zeroes = – 4 = -4/1 = (-Coefficient of x)/(Cofficient of x2)

Product of zeroes = -12 = -12/1 = Constant term / Coefficient of x2

394.

Find the quadratic polynomial whose zeroes are 2/3 and -1/4. Verify the relation between the coefficients and the zeroes of the polynomial.

Answer»

Let ∝ = 2/3 and β = -1/4

Sum of the zeroes = (∝ + β) = 2/3 + -1/4 = 5/12

Product of the zeroes, = 2/3 x -1/4 = -1/6

Required quadratic polynomial is

x2 – (∝+β)x + ∝β 

= x2 – (5/12)x – (-1/6)

= 1/12(12x2 – 5x – 2)

And,

Sum of the zeroes = 5/12 = (-Coefficient of x)/(Cofficient of x2)

Product of zeroes = -1/6 = Constant term / Coefficient of x2

395.

Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.

Answer»

Given : Sum of zeroes = (∝ + β) = 8

Product of the zeroes = = 12

Required quadratic polynomial is

x2 – (∝+β)x + ∝β 

= x2 – (8)x + 12

Now, find the zeroes of the above polynomial.

Let f(x) = x2 – (8)x + 12

= x2 – 6x – 2x + 12

= (x -6)(x – 2)

Substitute f(x) = 0.

either (x -6) = 0 or (x – 2) = 0

 x = 6 or x = 2

2 and 6 are the zeroes of the polynomial.

396.

Find the quadratic polynomial, sum of whose zeroes is √2 and their product is (1/ 3).

Answer»

We can find the quadratic equation if we know the sum of the roots and product of the roots by using the formula 

x2 – (Sum of the roots)x + Product of roots = 0 

⇒ x2 – √2x + 1/3 = 0 

⇒ 3x2 –3√2x + 1 = 0

397.

If x = \(\frac{2}3\) and x = -3 are the roots of the quadratic equation ax2 + 2ax + 5x + 10 then find the value of a and b.

Answer»

Given: 

ax2 + 7x + b = 0 

Since, 

x = \(\frac{2}3\) is the root of the above quadratic equation 

Hence, it will satisfy the above equation. 

Therefore, we will get 

a (\(\frac{2}3\))2 + 7 (\(\frac{2}3\)) + b = 0 

\(\frac{4}9\)a + \(\frac{14}3\) + b = 0 

⇒ 4a + 42 + 9b = 0 

⇒ 4a + 9b = – 42 …(1) 

Since, x = –3 is the root of the above quadratic equation 

Hence, It will satisfy the above equation. 

Therefore, we will get 

a (–3)2 + 7 (–3) + b = 0 

⇒ 9a – 21 + b = 0 

⇒ 9a + b = 21 …..(2) 

From (1) and (2), we get 

a = 3, b = – 6

398.

Is the following statement True or False? Justify your answer.The only value of k for which the quadratic polynomial kx2 + x + k has equal zeroes is 1/2.

Answer»

The only value of k for which the quadratic polynomial kx2 + x + k has equal zeroes is 1/2: False.

A quadratic polynomial kx2 + x + k have equal roots when its discriminate is equal to

i.e. D = 0

b2 - 4ac = 0

b2 = 4ac

12 = 4(k) (k)

1 = 4k2

k2 = 1/4

k = +- 1/2

Hence, k = 1/2 is not the only value for which the polynomial has equal roots.

399.

H.C.F. of 36a5b2 and 90a3b4 will be(A) 36a3b2(B) 18a3b2(C) 90a3b4(D) 180a5b4

Answer»

Answer is (B) 18a3b2

36a5b2 = 3 × 3 × 2 × 2 × a5 × b2

90a3b4 = 3 × 3 × 2 × 5 × a3 × b4 

= 3 × 3 × 2 × a3 × b2

H.C.F. = 18a3b2

400.

If u(x) = (x – 1)2 and v(x) = (x2 – 1) then, verify the relation L.C.M. × H.C.F. = u(x) × v(x).

Answer»

u(x) = (x – 1)2

⇒ u(x) = (x – 1)(x – 1)

and v(x) = (x2 – 1) 

= (x – 1)(x + 1)

Product of common least powers 

= (x – 1)

H.C.F. = (x – 1)

Product of highest power of prime factors 

= (x – 1)2(x + 1)

L.C.M. = (x – 1)2(x + 1)

Test:

u(x) × v(x) = (x – 1)2 × (x2 – 1) 

= (x – 1)2(x2 – 1)

and H.C.F. × L.C.M. 

= (x – 1)(x – 1)2(x + 1) 

= (x – 1)2(x2 – 1)

So, L.C.M. × H.C.F. = w(x) × v(x).