Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, thenA. c = 0B. c > 0C. c < 0D. None of these

Answer»

Given;

f(x) = ax2 + bx + c has no real zeroes, and a + b + c 0.

Suppose

a = – 1, b = 1, c = – 1

Then a + b + c = – 1,

b 2 – 4ac = – 3

Therefore it is possible that c is less tha zero.

Suppose c = 0

Then b2 – 4ac = b2 ≥ 0

So,

f(x) has at least one zero.

Therefore c cannot equal zero.

Suppose c > 0.

It must also be true that b2 ≥0

Then,

b 2 – 4ac < 0 only if a > 0.

Therefore,

a + b + c < 0.

– b > a + c > 0

b 2 > (a + c)2

b 2 > a2 + 2ac + c2

b 2 – 4ac > (a – c)2 ≥ 0

As we know that the discriminant can’t be both greater than zero and less than zero,

So,

C can’t be greater than zero.

452.

If α, β are the zeros of the polynomial f(x) = x2 – p (x + 1) – c such that (α + 1) (β + 1) = 0, then c =A. 1B. 0C. – 1D. 2

Answer»

Given

f(x) = x2 – p (x + 1) – c

α and β are the zeros

Then,

f(x) = x2 – p (x + 1) – c

= x2 – px – (p + c)

As

(α + 1)(β + 1) = αβ + α + β + 1

= – p – c + p + 1

= 1 – c

So,

The value of c,

c = 1

453.

If α, β are the zeros of polynomial f(x) = x2 – p (x + 1) – c, then (α + 1) (β + 1) =A. c – 1B. 1 – cC. cD. 1 + c

Answer»

Given,

f(x) = x2 – p (x + 1) – c

α and β are the zeros

So,

f(x) = x2 – p (x + 1) – c

= x2 – px – (p + c)

As,

(α + 1)(β + 1) = αβ + α + β + 1

= – p – c + p + 1

= 1 – c

454.

Divide 4p2 + 2p + 2 by ‘2p’ and write division fact.

Answer»

4p2 + 2p ÷ 2 = \(\frac {4p^2}{2p} + \frac {2p}{2p} + \frac {2}{2p}\)

= 2p + 1 + 1/P

Division fact :

(2p + 1 + 1/P). 2p = 4p2 + 2p + 2

455.

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(i) `1/4,-1` (ii) `sqrt(2),1/3` (iii) `0,sqrt(5)`(iv) `1,1`(v) `-1/4 , 1/4 `(vi) `4, 1`

Answer» (i) `1/4 = alpha + beta= -b/a`
`alpha*beta = -1= c/a`
for the equation `ax^2 + bx+c=0`
let a=4; `-b/a = 1/4`
`b=-1`
`c/4 = -1 => c=-4`
`p(x) = 4x^2 -x - 4`
(ii) `alpha+ beta= sqrt2 & alpha*beta = 1/3`
so, `-b/a = sqrt2 & c/a = 1/3`
if `a=3; -b/3 = sqrt2`
`b= -3 sqrt2`
`c/3 = 1/3 => c=1`
`p(x) = 3x^2 - 3 sqrt2 x +1`
(iii) `alpha+ beta = 0 = -b/a`
`alpha*beta = sqrt5= c/a`
if a=1; `-b/1=0; b=0`
`c/1 = sqrt5 => c= sqrt5`
`p(x) = x^2 + 0 xx x + sqrt5 `
`= x^2 + sqrt 5`
Answer
456.

Divide `2x^2+3x+1`by `x+2`

Answer» Please refer video for the division.
Here, quotient `= 2x-1`
Remainder `= 3`
So, our polynomial can be represented by,
`2x^2 +3x+1 = (x+2)(2x-1)+3`
457.

The zero of the linear polynomial px + q is ………………..A) -q/pB) p/qC) -p/qD) q

Answer»

Correct option is (A) -q/p

px + q = 0

\(\Rightarrow\) x = \(\frac{-q}p\)

Thus, \(\frac{-q}p\) is a zero of linear equation px+q.

Correct option is A) -q/p

458.

If `p(x)=4x^(2)-3x+6` find : (i) p(4) (ii) p(-5)

Answer» Correct Answer - (i) 58, (ii) 121
459.

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(iv) 1, 1 (v) `-1/4,1/4` (vi) 4, 1

Answer» `alpha=-1/4`
`beta=1/4`
`alpha+beta=1/4-1/4=0`
`alpha*beta=-1/4*1/4=-1/16`
`x^2-0x-1/16=0`
`x^2-1/16=0`
460.

Find the zero of the polynomial : `(i) p(x)=x-3 " " (ii) q(x)=3x-4 " " (iii) p(x)=4x-7 " " (iv) q(x)=px+q, p ne 0` `(v)p(x)=4x " " (vi) p(x)=(3)/(2)x-1`

Answer» Correct Answer - `(i) 3, (ii) (4)/(3), (iii) (7)/(4), (iv) -(q)/(p), (v) 0, (vi) (2)/(3)`
461.

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : `p(x)=x^(4)+1, " "g(x)=x-1`

Answer» Correct Answer - `q(x)=x^(3)+x^(2)+x+1, " " r(x)=2`
462.

Find a cubic polynomial whose zeroes are 3, 5 and -2.

Answer»

Let α, β and γ are the zeroes of the required polynomial. 

Then we have: 

α + β + γ = 3 + 5 + (-2) = 6 

αβ + βγ + γα = 3 × 5 + 5 × (-2) + (-2) × 3 = -1 

and αβγ = 3 × 5 × -2 = -30 

Now, p(x) = x3 – x2 (α + β + γ) + x (αβ + βγ + γα) – αβγ 

= x3 – x2 × 6 + x × (-1) – (-30) 

= x3 – 6x2 – x + 30 

So, 

the required polynomial is p(x) = x3 – 6x2 – x + 30.

463.

Verify that (i) 3 is a zero of the polynomial x-5. (ii) -2 is a zero of the polynomial x+2. `(iii) (7)/(3)` is a zero of the polynomial 3x-7. (iv) 2 and 3 are zeros of the polynomial (x-2)(x-3). `(v) (13)/(2)` and -3 are zeros of the polynomial `2x^(2)-7x-39`.

Answer» Correct Answer - (i) no, (ii) yes, (iii) yes, (iv) yes, (v) yes.
464.

Find a quadratic polynomial whose zeroes are 2 and -5.

Answer»

It is given that the two roots of the polynomial are 2 and -5. 

Let α = 2 and β = -5 

Now, the sum of the zeroes, α + β = 2 + (-5) = -3 

Product of the zeroes, αβ = 2 × (-5) = -15 

∴ Required polynomial = x2 – (α + β)x + αβ

= x2 – (-3)x + 10 

= x2 + 3x – 10

465.

Verify that 2 is a zero of the polynomial x3 + 4x2 – 3x – 18.

Answer»

Let p(x) = x3 + 4x2 – 3x – 18 

Now, p(2) = 23 + 4 × 22 – 3 × 2 – 18 = 0

∴ 2 is a zero of p(x).

466.

If the zeroes of the polynomial x3 – 3x2 + x + 1 are (a – b), a and (a + b), find the values of a and b.

Answer»

The given polynomial = x3 – 3x2 + x + 1 and its roots are (a – b), a and (a + b). 

Comparing the given polynomial with Ax3 + Bx2 + Cx + D, 

we have: 

A = 1, B = -3, C = 1 and D = 1 

Now, (a – b) + a + (a + b) = \(\frac{-B}A\)

⇒ 3 a = – \(\frac{-3}1\)

⇒ a = 1 

Also, (a – b) × a × (a + b) = \(\frac{-D}A\)

⇒ a (a2 – b2 ) = \(\frac{-1}1\)

⇒ 1 (12 – b2 ) = -1 

⇒ 1– b2 = -1 

⇒ b2 = 2 

⇒ b = ±√2 

∴ a = 1 and b = ±√2

467.

If the zeroes of the polynomial f(x) = x3 – 3x2 + x + 1 are (a – b), a and (a + b), find the values of a and b.

Answer»

By using the relationship between the zeroes of he quadratic polynomial. 

We have, 

Sum of zeroes = \(\frac{-(coefficient\,of\,x^2)}{coefficient\,of\,x^3}\)

∴ a – b + a + a + b = \(\frac{-(-3)}1\)

⇒ 3a = 3

⇒ a = 1 

Now, 

Product of zeroes = \(\frac{-(constant\,term)}{coefficient\,of\,x^3}\)

∴ (a – b) (a) (a + b) = \(\frac{-1}1\) 

⇒ (1 – b) (1) (1 + b) = –1 [∵a =1] 

⇒ 1 – b2 = –1 

⇒ b2 = 2 

⇒ b = ±√2

468.

Which of the following is a polynomial? (a) x2 – 5x + 6√x + 3 (b) \(x^{\frac{3}2}\) – x + \(x^{\frac{1}2}\) + 1 (c) √x + \(\frac{1}{\sqrt{x}}\) (d) None of these

Answer»

(d) none of these 

A polynomial in x of degree n is an expression of the form p(x) = a0 + a1x + a2x2 + ……+ anxn , where an ≠ 0.

469.

Sum of zeroes of a polynomial x3 – 2x2 + 3x – 4 is ………………. A) -2 B) 2 C) 1 D) 4

Answer»

Correct option is (B) 2

Sum of zeroes \(=\frac{\text{- coefficient of }x^2}{\text{coefficient of }x^3}\)

\(=\frac{-(-2)}1\) = 2

Correct option is B) 2

470.

Zero of the polynomial (3x – 1) is ……………… A) 3 B) 0 C) 1/3D) 1

Answer»

Correct option is (C) 1/3

3x – 1 = 0

\(\Rightarrow\) \(x=\frac13\)

Thus, zero of polynomial 3x-1 is \(\frac13.\)

Correct option is C) 1/3

471.

The remainder of 3x3 – 2x2 + x + 2 when divided by 3x + 1 isA) 4/3B) 3/4C) -4/3D) None

Answer»

Correct option is (A) 4/3

\(\frac{3x^3-2x^2+x+2}{3x+1}\) \(=x^2-x+\frac23+\frac{\frac43}{3x+1}\)

Thus, when we divides \((3x^3-2x^2+x+2)\) by (3x+1) then quotient \(=x^2-x+\frac23\) and remainder \(=\frac{4}{3}.\)

Correct option is A) 4/3

472.

The zeroes of the polynomial (shown in the graph) areA) 2, 0 B) 0,-2 C) -2, 2 D) 0, 0

Answer»

Correct option is C) -2, 2

473.

If one zero of polynomial f(y) = (k2 + 4) y2 + 13y + 4k is the reciprocal of the other, then value of k is

Answer» let zeroes be x,1/x.

therofore x+1/x=-13/k^2+4

and x*1/x=4k/k^2+4

k^2+4=4k

k=2
474.

p(x)= x⁴+ x³+2x²+3x+4 g(x)= x+2

Answer» First find the value of x in   second polynomial which is equal to x=-2.

Then ,put the value of x in the first polynomial and find the remainder.

f(x)=[(-2)×(-2)×(-2)×(-2)]+(-2)³+2(-2)²+3×(-2)+4

=16+(-8)+2×4+(-6)+4

16-8+8-6+4

8+2+4

10+4

14=remainder.

Do  tell is it right.
475.

If a quadratic polynomial f(x) is not factorizable into linear factors, then it has no real zero. (True/False)

Answer»

True

Let a polynomial

f(x) = x2 + 9

f(x) = (x + 3i)(x – 3i)

So,

The zeroes are always imaginary and not real.

476.

Find a cubic polynomial whose zeroes are 1/2, 1 and -3.

Answer»

General form of a cubic polynomial whose zeroes are a, b and c is:

x3 – (a + b + c) x2 + (ab + bc + ca)x – abc …(1)

To Find: Cubic polynomial whose zeroes are 1/2, 1 and -3

Let us say, a = 1/2, b = 1 and c = -3

Putting the values of a, b and c in the equation (1) we get:

= x3 – (1/2 + 1 – 3) x2 + (1/2 – 3 – 3/2)x – (- 3/2)

= x3 – (-3/2) x2 – 4x + 3/2

= 2x3 + 3x2 – 8x + 3

Which is required polynomial.

477.

Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.

Answer»

As we know, General form of a cubic polynomial whose zeroes are a, b and c is:

x3 – (a + b + c) x2 + (ab + bc + ca)x – abc

Also written as :

x3 – (Sum of the zeros) x2 + (Sum of the product of the zeros taking two at a time) x – (Product of Zeros) …(1)

Given:

Sum of the zeros = 5

Sum of the product of its zeros taken two at a time -2

Product of its zeros = –24

Putting these values in the equation (1), we get:

x3 – 5x2 – 2x + 24

Which is required polynomial.

478.

Find the zeros of the polynomial x2 – 3x – m (m + 3).

Answer»

Let f(x) = x2 – 3x – m (m + 3)

Above polynomial can be written as,

f(x) = x2 – (m + 3)x + mx – m(m + 3)

= x(x – m – 3) + m(x – m – 3)

= (x – m – 3)(x + m)

To find the zeroes of f(x), put f(x) = 0

(x – m – 3)(x + m) = 0

Either x – m – 3 = 0 or x + m = 0

x = m + 3 or x = -m

Required Zeros are (m + 3), -m

479.

Find the zeros of the polynomial x2 + x ‒ p (p + 1).

Answer»

Let f(x) = x2 + x ‒ p (p + 1)

Above polynomial can be written as,

= x2 + (p + 1) x – px – p (p + 1)

= x (x + (p + 1)) – p (x + (p + 1))

= (x – p)(x + (p + 1))

To find the zeroes of f(x), put f(x) = 0

(x – p)(x + (p + 1)) = 0

either (x – p) = 0 or (x + (p + 1)) = 0

x = p or x = – (p + 1)

Hence, the zeros of the given polynomial are p and – (p + 1)

480.

If one zero of the polynomial x2 ‒ 4x + 1 is (2 + √3), write the other zero.

Answer»

Given: (2 + √3) is one of zero of polynomial x2 ‒ 4x + 1.

To find: Other zero

Since given polynomial is a quadratic so it has only two zeros.

Let other zero be x.

Now,

Sum of zeros = -(coefficient of x)/(coefficient of x^2)

x + (2 + √3) = -(-4/1) = 4

x + 2 + √3 = 4

or x = 2 – √3

Hence, the other zero is (2 -√3).

481.

If -4 is a zero of the polynomial x2 – x – (2k + 2) is –4, then find the value of k.

Answer»

Given: x = –4 is one zero of the polynomial x2 – x – (2k + 2) 

Therefore, it will satisfy the above polynomial. 

Now, we have 

(–4)2 – (–4) – (2k + 2) = 0 

⇒ 16 + 4 – 2k – 2 = 0 

⇒ 2k = – 18 

⇒ k = 9

482.

Find the zeroes of the polynomial x2 – 3x – m(m + 3)

Answer»

f(x) = x2 – 3x – m (m + 3) 

By adding and subtracting mx, we get 

f(x) = x2 – mx – 3x + mx – m (m + 3) 

= x[x – (m + 3)] + m[x – (m + 3)] 

= [x – (m + 3)] (x + m) 

f(x) = 0 ⇒ [x – (m + 3)] (x + m) = 0 

⇒ [x – (m + 3)] = 0 or (x + m) = 0 

⇒ x = m + 3 or x = –m 

So, the zeroes of f(x) are –m and +3.

483.

If 3 is a zero of the polynomial 2x2 + x + k, find the value of k.

Answer»

Given: x = 3 is one zero of the polynomial 2x2 + x + k 

Therefore, it will satisfy the above polynomial. 

Now, we have 

2(3)2 + 3 + k = 0 

⇒ 21 + k = 0 

⇒ k = – 21

484.

Write the following polynomials in coefficient form. i. x3– 2 ii. 5y

Answer»

i. x3 – 2 = x3 + 0x2 + 0x – 2 

∴ Coefficient form of the given polynomial = (1, 0, 0, -2) 

ii. 5y = 5y + 0 

∴Coefficient form of the given polynomial = (5,0)

485.

If p(y) = y2 – 3√2 + 1, then find p(3√2).

Answer»

p(y) = y2 – 3√2 y + 1 

Put p = 3√2 in the given polynomial. 

∴ p(3√2) = (3√2)2 – 3√2(3√2 ) + 1 

= 9 x 2 – 9 x 2 + 1 

= 18 – 18 + 1 

∴ p(3√2) = 1

486.

For x = 0, find the value of the polynomial x2 – 5x + 5.

Answer»

p(x) = x2 – 5x + 5 

Put x = 0 in the given polynomial. 

∴ P(0) = (0)2 – 5(0) + 5

= 0 – 0 + 5 

∴ p(0) = 5

487.

If p(y) = y2 – 3√2 + 1, then find p( 3√2 )

Answer»

p(y) = y2 – 3√2 y + 1 

Put p= 3√2 in the given polynomial. 

∴ p( 3√2 ) = (3√2 )2 – 3√2 (3√2 ) + 1 

= 9 x 2 – 9 x 2 + 1 

= 18 – 18 + 1

 ∴ p( 3√2 ) = 1

488.

If p(m) = m3 + 2m2 – m + 10, then P(a) + p(-a) = ?

Answer»

p(m) = m3 + 2m2 – m + 10 

Put m = a in the given polynomial. 

∴ p(a) = a3 + 2a2 – a + 10 …(i) 

Put m = -a in the given polynomial.

 p(-a) = (-a)3 + 2(-a)2 – (-a) +10 

∴ p (-a) = -a3 + 2a2 + a + 10 …(ii) 

Adding (i) and (ii), 

p(a) + p(-a) = (a3 + 2a2 – a + 10) + (-a3 + 2a2 + a + 10) 

= a3 – a3 + 2a2 + 2a2a + a + 10 + 10 

∴ p(a) + p(-a) = 4a2 + 20

489.

If p(y) = 2y3 – 6y2 – 5y + 7, then find p(2).

Answer»

p(y) = 2y3 – 6y2 – 5y + 7 

Put y = 2 in the given polynomial. 

∴ p(2) = 2(2)3 – 6(2)2 – 5(2) + 7

= 2 x 8 – 6 x 4 – 10 + 7 

 16 – 24 – 10 + 7 

∴ P(2) = -11

490.

Find the value of the polynomial 2x – 2x3 + 7 using given values for x = 3.

Answer»

p(x) = 2x – 2x3 + 7

 Put x = 3 in the given polynomial. 

∴ p(3) = 2(3) – 2(3)3 + 7 

= 6 – 2 x 27 + 7 

= 6 – 54 + 7 

∴ P(3) = – 41

491.

Find the value of the polynomial 2x – 2x3 + 7 using given values for x = -1.

Answer»

 p(x) = 2x – 2x3 + 7

Put x = -1 in the given polynomial

∴  p(- 1) = 2(- 1) – 2(-1)3 + 7 

= – 2 – 2(-1) + 7 

= -2 + 2 + 7 

∴ p(-1) = 7

492.

Find the value of polynomials for the indicated value of variables p(x) = 4x2 – 3x + 7 at x = 1.

Answer»

The value of p(x) at x = 1 is 4(1)2 – 3(1) + 7 = 8

493.

Find the value of the polynomial 2x – 2x3 + 7 using given values for x = 0.

Answer»

p(x) = 2x – 2x3+ 7

 Put x = 0 in the given polynomial. 

∴ p(0) = 2(0) – 2(0)3 + 7 

= 0 – 0 + 7 

∴ P(0) = 7

494.

How can you write a polynomial with 15 terms in variable ‘x’.

Answer»

a14 p14 + a13 p13 + a12 p12 + …………….+ a1 p + a0

495.

Write a polynomial with 2 terms in variable x.

Answer»

polynomial with 2 terms in variable x is 2x + 3x2

496.

For each of the following polynomial, find p(1), p(0) and p(- 2).p(x) = x3

Answer»

p(x) = x3 

∴ p(1) = 13 = 1

 p(x) = x3

∴ p(0) = 03 = 0 

p(x) = x3 

∴ p(-2) = (-2)3 = -8

497.

Write the index form of the polynomial using variable x from its coefficient form. i. (3, -2, 0, 7, 18) ii. (6, 1, 0, 7) iii. (4, 5, -3, 0)

Answer»

i. Number of coefficients = 5 

∴ Degree = 5 – 1 = 4 

∴Index form = 3x4 – 2x3 + 0x2 + 7x + 18 

ii. Number of coefficients = 4 

∴Degree = 4 – 1 = 3 

∴ Index form = 6x3 + x2 + 0x + 7

iii. Number of coefficients = 4 

∴ Degree = 4 – 1 = 3 

∴ Index form = 4x3 + 5x2 – 3x + 0

498.

Write the following polynomials in coefficient form.i. 2m4 – 3m2 + 7ii. –\(\frac2{3}\)

Answer»

i. 2m4 – 3m2 + 7 

= 2m4 + 0m3 – 3m2 + 0m + 7 

∴ Coefficient form of the given polynomial = (2, 0, -3, 0, 7)

ii.  –\(\frac2{3}\) 

∴Coefficient form of the given polynomial = (-\(\frac2{3}\))

499.

For each of the following polynomial, find p(1), p(0) and p(- 2).p(y) = y2 – 2y + 5

Answer»

p(y) = y2 – 2y + 5 

∴ p(1) = 12 – 2(1) + 5 

= 1 – 2 + 5

∴ P(1) = 4

 p(y) = y2 – 2y + 5 

∴ p(0) = 02 – 2(0) + 5

 = 0 – 0 + 5 

∴ p(0) = 5

p(y) = y2 – 2y + 5 

∴ p(- 2) = (- 2)2 – 2(- 2) + 5 

= 4 + 4 + 5 

∴ p(-2) = 13

500.

Write the following polynomial in coefficient form.i. x4 + 16ii. m5 + 2m2 +3m + 15

Answer»

i. x4 + 16 

Index form = x4 + 0x3 + 0x2 + 0x + 16 

∴ Coefficient form of the polynomial = (1,0,0,0,16) 

ii. m5 + 2m2 + 3m + 15

Index form = m5 + 0m4+ 0m3 + 2m2+ 3m + 15 

∴ Coefficient form of the polynomial = (1, 0, 0, 2, 3, 15)