Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

951.

Find the value of :`(1) x^3 + y^3 -12xy + 64` when `x+y+4=0``(2) x^3 -8y^3-36xy+216` when `x-2y+6=0`

Answer» (i) here we see that x+y+4=0
`therefore x^(3)+Y^(3)+(4)^(3)=3xy(4)`
[using idenity ,`a+b+c =0, "then" a^(3)+b^(3)+c^(3)=3abc`]
`12xy ….(i) ` Now , `x^(3)+y^(3)-12xy+64=x^(3)+64=x^(3)+y^(3)+64-12xy`
`=12xy-12xy =0`[fom Eq,(i) ]
(ii) here , we see that `x-2y-6=0`
`x^(3)+(-2)^(3)+(-6)^(3)=3x(-2y)(-6)`
[using i identity `a+b+c=0 "then " a^(3)+b^(3)+c^(3)=3abc`]
`implies x^(3)-8y^(3)-216=36xy`
Now , `x^(3)-8y^(3)-36xy-216` .....(i)
`=x^(3)-8y^(3)-216-36xy `
`=36xy-36xy=0` [from Eq.(i) ]
952.

Give possible expressions for the length and breath of each of the following rectangles, in which their areas are given : (i) area`=25a^(2)-35a+12 " " (ii) " area"=35y^(2)+13y-12`

Answer» (i) We have, area of rectangel `=25a^(2)-35a+12`
`=25a^(2)-20a-15a+12`
`=5a(5a-4)-3(5a-4)=(5a-4)(5a-3)`
Possible expression for length =5a-3
and breadth =5a-4
(ii) We have, area of rectangle`=35y^(2)+13y-12=35y^(2)-15y+28y-12`
=5y(7y-3)+4(7y-3)(5y+4)
Possible expression for length =7y-3
and breadth =5y+4
953.

Find product using appropriate identities : (x + 5) (x + 5)

Answer»

(x + 5) (X + 5) = (x + 5)2 

= x2 + 2(x) (5) + 52 

= x2 + 10x + 25

954.

Find product using appropriate identities : (p – 3) (p + 3)

Answer»

(p – 3) (p + 3) 

= p2 – 32 

= p2 – 9

955.

Give possible expression for the length and breadth of the rectangle whose area is given by `4a^(2)+4a-3.`

Answer» Given , area of rectangle `=4a^(2) +6a-2a-3`
`=4a^(2)+4a-3` [ by splitting middle term ]
`=2a(2a+3)-1(2a+3)=(2a-1)(2a-1)2a+3)`
Hence , possible length `=2a-1`
and breadth `=2a+3`
956.

Give possible expression for the length and breadth of the rectangle whose area is given by 4a2 +4a – 3.

Answer»

Given, area of rectangle = 4a2 + 6a - 2a - 3

= 4a2 + 4a – 3 [by splitting middle term]

= 2a(2a + 3) -1 (2a + 3)

= (2a – 1)(2a + 3) 

Hence, possible length = 2a -1 and breadth = 2a + 3.

957.

Find product using appropriate identities : 102 x 98

Answer»

102 x 98 = (100 + 2) (100 -2) 

= 1002 – 22 

= 10000 – 4 

= 9996

958.

Factorise using appropriate identities :49a2 + 70ab + 25b2

Answer»

49a2 + 70ab + 25b2 

= (7a)2 + 2 (7a) (5b) + (5b)2 

= (7a + 5b)2 

= (7a + 5b)(7a + 5b)

959.

Without actual calculating the cubes, find the value of each of (0.2)3 – (0.3)3 + (0.1)3

Answer»

Given that (0.2)3 – (0.3)3 + (0.1)3 

= (0.2) + (- 0.3) + (0.1) 

Sum of the bases 

= 0.2 – 0.3 + 0.1 = 0

∴ (0.2)3 + (-0.3)3 + (0.1)3 

= 3 x (0.2) (- 0.3) (0.1) 

= -0.018

960.

Factorise using appropriate identities : t2 – 2t + 1

Answer»

= (t)2 – 2(t) (1) + (1)2 

= (t – 1)2 = (t – 1) (t – 1)

961.

Give one example each of a monomial and trinomial of degree 10.

Answer»

– 7x10 is a monomial of degree 10. 

3x2 y8 + 7xy – 8 is a trinomial of degree 10.

962.

Without actual calculating the cubes, find the value of each of (28)3 + (- 15)3 + (- 13)3

Answer»

Given (28)3 + (- 15)3 + (- 13)3

Sum of the bases = 28 + (- 15) + (- 13) = 0 

∴ (28)3 + (- 15)3 + (- 13)3 

= 3 x 28 x (- 15) x (- 13) 

= 16380

963.

Factorise : `x^4+3x^2-28`

Answer» Here, a=3, b=-35,c=-52
`therefore axxc=-156`
Now, we take two factors of -156 whose sum is -35. Such factors are 4 and -39.
`therefore 3x^(4)-35x^(2)y^(2)-52y^(4)=3x^(4)-39x^(2)y^(2)+4x^(2)y^(2)-52y^(4)`
`=3x^(2)(x^(2)-13y^(2)+4y^(2)(x^(2)-13y^(2))`
`=(x^(2)-13y^(2))(3x^(2)+4y^(2))`
`[(x)^(2)-(sqrt(13)y)^(2)](3x^(2)+4y^(2))`
`=(x+sqrt(13)y)(x-sqrt(13)y)(3x^(2)+4y^(2))`
964.

Find the zeros of the quadratic polynomials x2 + 3x - 10 and verify the relationship between the zeros and the coefficients.

Answer»

Let f(x) = x2 + 3x ˗ 10

= x2 + 5x ˗ 2x ˗ 10

= x(x + 5) ˗ 2(x + 5)

= (x ˗ 2) (x + 5)

To find the zeroes, set f(x) = 0, then

either x ˗ 2 = 0 or x + 5 = 0

⇒ x = 2 or x = −5.

So, the zeroes of f(x) are 2 and −5.

Again,

Sum of zeroes = 2 + (-5) = -3 = (-3)/1

= -b/a

= (-Coefficient of x)/(Cofficient of x2)

Product of zeroes = (2)(-5) = -10 = (-10)/1

= c/a

= Constant term / Coefficient of x2

965.

Find the zeros of the quadratic polynomials x2 - 2x - 8 and verify the relationship between the zeros and the coefficients.

Answer»

Let f(x) = x2 ˗ 2x ˗ 8

= x2 ˗ 4x + 2x ˗ 8

= x(x ˗ 4) + 2(x ˗ 4)

= (x ˗ 4) (x + 2)

To find the zeroes, set f(x) = 0, then

either (x ˗ 4) = 0 or (x+2) = 0

x = 4 or x = -2

Again,

Sum of zeroes = (4 – 2) = 2 = 2/1

= -b/a

= (-Coefficient of x)/(Cofficient of x2)

Product of zeroes = (4) (-2) = -8/1

= c/a

= Constant term / Coefficient of x2

966.

Write the degree of following polynomials : `(i) 4x+7 " " (ii) 4x^(2)-3x+5 " " (iii) 2x^(2)-(3)/(2)x+6`

Answer» (i) Highest power of x is 1 in 4x+7. Hence, its degree is 1.
(ii) `4x^(2)-3x+5` is of degree 2.
(iii) `2x^(2)-(3)/(2)x+6` is of degree 2.
967.

Classify the following as a constant, linear, quadratic and cubic polynomials:(i) 2 – x2 + x3(ii) 3x3(iii) 5t – √7(iv) 4 – 5y2(v) 3(vi) 2 + x(vii) y3 – y(viii) 1 + x + x2(ix) t2 (x) √2x – 1

Answer»

Constant polynomials: The polynomial of the degree zero.

Linear polynomials: The polynomial of degree one.

Quadratic polynomials: The polynomial of degree two.

Cubic polynomials: The polynomial of degree three.

(i) 2 – x2 + x3

Powers of x = 2, and 3 respectively.

Highest power of the variable x in the given expression = 3

Hence, degree of the polynomial = 3

Since it is a polynomial of the degree 3, it is a cubic polynomial.

(ii) 3x3

Power of x = 3.

Highest power of the variable x in the given expression = 3

Hence, degree of the polynomial = 3

Since it is a polynomial of the degree 3, it is a cubic polynomial.

(iii) 5t – √7

Power of t = 1.

Highest power of the variable t in the given expression = 1

Hence, degree of the polynomial = 1

Since it is a polynomial of the degree 1, it is a linear polynomial.

(iv) 4 – 5y2

Power of y = 2.

Highest power of the variable y in the given expression = 2

Hence, degree of the polynomial = 2

Since it is a polynomial of the degree 2, it is a quadratic polynomial.

(v) 3

There is no variable in the given expression.

Let us assume that x is the variable in the given expression.

3 can be written as 3x0.

i.e., 3 = x0

Power of x = 0.

Highest power of the variable x in the given expression = 0

Hence, degree of the polynomial = 0

Since it is a polynomial of the degree 0, it is a constant polynomial.

(vi) 2 + x

Power of x = 1.

Highest power of the variable x in the given expression = 1

Hence, degree of the polynomial = 1

Since it is a polynomial of the degree 1, it is a linear polynomial.

(vii) y3 – y

Powers of y = 3 and 1, respectively.

Highest power of the variable x in the given expression = 3

Hence, degree of the polynomial = 3

Since it is a polynomial of the degree 3, it is a cubic polynomial.

(viii) 1 + x + x2

Powers of x = 1 and 2, respectively.

Highest power of the variable x in the given expression = 2

Hence, degree of the polynomial = 2

Since it is a polynomial of the degree 2, it is a quadratic polynomial.

(ix) t2

Power of t = 2.

Highest power of the variable t in the given expression = 2

Hence, degree of the polynomial = 2

Since it is a polynomial of the degree 2, it is a quadratic polynomial.

(x) √2x – 1

Power of x = 1.

Highest power of the variable x in the given expression = 1

Hence, degree of the polynomial = 1

Since it is a polynomial of the degree 1, it is a linear polynomial.

968.

Classify the following as linear, quadratic and cubic polynomials.i) 5x2 + x – 7ii) x – x3iii) x2 + x + 4iv) x – 1v) 3pvi) πr2 

Answer»

i) 5x2 + x – 7 : degree 2 hence quadratic polynomial.

ii) x – x3 , : degree 3 hence cubic polynomial. 

iii) x2 + x + 4 : degree 2 hence quadratic polynomial. 

iv) x – 1 : degree 1 hence linear polynomial. 

v) 3p : degree 1 hence linear polynomial. 

vi) πr2 : degree 2 hence quadratic polynomial.

969.

Classify the following as linear, quadratic and cubic polynomials : `(i) 5x^(3)+3x^(2)+1 " " (ii) 3x^(2)+x " " (iii) x+1`

Answer» (i)` 5x^(3)+3x^(2)+1` is of degree 3, hence it is cubic polynomials.
`(ii) 3x^(2)+x` is of degree 2, hence it is quadratic.
(iii) x+1 is of degree 1, hence it is linear.
970.

Simplify \(\cfrac{x+1}{x-1}\) + \(\cfrac{x-1}{x+1}\) - \(\cfrac{2x^2-2}{x^2+1}\)A) \(\cfrac{4x^4+2}{x^4-1}\)B) \(\cfrac{8x^2}{x^4-1}\)C) \(\cfrac{4x^2}{x^4-1}\)D) 1

Answer»

Correct option is (B) \(\frac{8x^2}{x^4-1}\)

\(\frac{x+1}{x-1}+\frac{x-1}{x+1}-\frac{2x^2-2}{x^2+1}\)

\(=\frac{(x+1)^2(x^2+1)+(x-1)^2(x^2+1)-2(x^2-1)(x^2-1)}{(x-1)(x+1)(x^2+1)}\)

\(=\frac{(x^2+1)(x^2+2x+1+x^2-2x+1)-2(x^2-1)^2)}{(x^2-1)(x^2+1)}\)

\(=\frac{2(x^2+1)^2\div2(x^2-1)^2}{z^4-1}\)

\(=\frac{2(x^4+2x^2+1-(x^4-2x^2+1))}{z^4-1}\)

\(=\frac{8x^2}{x^4-1}\)

Correct option is B) \(\cfrac{8x^2}{x^4-1}\)

971.

Simplify \(\frac{x^2-(y-2z)^2}{x-y+2z}\) + \(\frac{y^2-(2x-z)^2}{y+2x-z}\) + \(\frac{z^2-(x-2y)^2}{z-x+2y}\) is...............A) 1 B) x + y + z C) 0 D) x – y – z

Answer»

Correct option is (C) 0

\(\frac{x^2-(y-2z)^2}{x-y+2z}+\frac{y^2-(2x-z)^2}{y+2x-z}+\frac{z^2-(x-2y)^2}{z-x+2y}\)

\(=\frac{(x-(y-2z))(x+y-2z)}{x-y+2z}+\frac{(y-(2x-z))(y+2x-z)}{y+2x-z}+\frac{(z-(x-2y))(z+x-2y)}{z-x+2y}\) \((\because(a+b)(a-b)=a^2-b^2)\)

\(=\frac{(x-y+2z)(x+y-2z)}{x-y+2z}+\frac{(y-2x+z)(y+2x-z)}{y+2x-z}+\frac{(z-x+2y)(z+x-2y)}{z-x+2y}\)

= (x+y-2z) + (y-2x+z) + (z+x-2y)

= (x+x-2x) + (y+y-2y) + (-2z+z+z)

= 0+0+0 = 0

Correct option is C) 0

972.

How much is a2 + 2ab + b2 more than a2 – 2ab + b2 ? A) -4ab B) 4ab C) 6abD) -3ab

Answer»

Correct option is (B) 4ab

\(\because\) \((a^2 + 2ab + b^2)\) \(-(a^2 – 2ab +b^2)\) = 4ab

\(\therefore\) \(a^2 + 2ab + b^2\) is 4ab more than \(a^2 – 2ab +b^2.\)

Correct option is B) 4ab

973.

Simplify \(\frac{a^2-(b-c)^2}{(a+c)^2-b^2}\) + \(\frac{b^2-(a-c)^2}{(a+b)^2-c^2}\) + \(\frac{c^2-(a-b)^2}{(b+c)^2-a^2}\)A) a + b + cB) \(\frac{1}{a+b+c}\)C) 1 D) 0 

Answer»

Correct option is (C) 1

\(\frac{a^2-(b-c)^2}{(a+c)^2-b^2}+\frac{b^2-(a-c)^2}{(a+b)^2-c^2}+\frac{c^2-(a-b)^2}{(b+c)^2-a^2}\)

\(=\frac{(a-(b-c))(a+b-c)}{(a+c-b)(a+c+b)}+\frac{(b-(a-c))(b+a-c)}{(a+b-c)(a+b+c)}+\frac{(c-(a-b))(c+a-b)}{(b+c-a)(b+c+a)}\)

\(=\frac{(a+c-b)(a+b-c)}{(a+c-b)(a+b+c)}+\frac{(b-a+c)(a+b-c)}{(a+b-c)(a+b+c)}+\frac{(c-a+b)(a+c-b)}{(c-a+b)(a+b+c)}\)

\(=\frac{a+b-c}{a+b+c}+\frac{b-a+c}{a+b+c}+\frac{a+c-b}{a+b+c}\)

\(=\frac{a+b-c+b-a+c+a+c-b}{a+b+c}\)

\(=\frac{2a-a+2b-b+2c-c}{a+b+c}\)

\(=\frac{a+b+c}{a+b+c}\) = 1

Correct option is C) 1

974.

The rational expression A = \((\frac{x+1}{x-1}\) - \(\frac{x-1}{x+1}\) - \(\frac{4x}{x^2+1})\) is multiplied with the additive inverse of B = \(\frac{1-x^2}{4x}\) to get C, then C = ……………A) 2 B) \(\frac{2x}{x^4-1}\)C) \(\frac{32x^2}{x^4-1}\)D) 1

Answer»

Correct option is (A) 2

\(C=A\times-B\)

\(=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x}{x^2+1}\right)(\frac{x^4-1}{4x})\)

\(=\left(\frac{(x+1)^2(x^2+1)-(x-1)^2(x^2+1)-4x(x^2-1)}{(x-1)(x+1)(x^2+1)}\right)(\frac{x^4-1}{4x})\)

\(=\left(\frac{(x^2+1)(x^2+2x+1-(x^2-2x+1))-4x(x^2-1)}{(x^2-1)(x^2+1)}\right)(\frac{x^4-1}{4x})\)

\(=\frac{4x(x^2+1-x^2+1)}{x^4-1}\times\frac{x^4-1}{4x}\)

= 2

Correct option is A) 2

975.

For the polynomials `(x^(3)+2x+1)/(5)-(7)/(2) x^(2)-x^(6)` ,then write (i) the degree of the polynomial (ii) the coefficient of `x^(3)` (iii) the coeficient of `x^(6)` (iv) the constant term

Answer» Given , polynomial is , `(x^(3)+2x+1)/(5)-(7)/(2) x^(2)-x^(6)`
`=(1)/(5)x^(3)+(2x)/(5)+(1)/(5)-(7)/(2)x^(2)-x^(6)`
(i) Degree of the polynomial is the highest power of the variable i.e., 6
(ii) the coefficient of `x^(3)` in given polynomial is `(1)/(5)`
(iii) the coefficient of `x^(6)` in given polynomial is -1.
(iv) the constant term in given polynomial is is `(1)/(5)`.
976.

Which of the following is true ? A) The sum of two rational expressions is always a rational expressionB) p(x)/q(x) is in its lowest terms if LCM [p(x), q(x)] = 1.C) The additive inverse of 1+x2 is x2−1.D) Reciprocal of -2x/x2-1 is x2-1/2x

Answer»

A) The sum of two rational expressions is always a rational expression

977.

Express x – 1/x as a rational expression,A) x2 - 1/xB) 1 - x2/xC) 1- x/xD) x - 1/x

Answer»

Correct option is (A) x2 - 1/x

\(x- \frac{1}{x}\) = \(\frac{x^2-1}{x}\)

Correct option is A) x2 - 1/x

978.

Suppose f(x) is a polynomial of degree 5 and with leading coefficient 2009.Suppose further f(1)=1,f(2)=3,f(3)=5,f(4)=7,f(5)=9.What is the value of f(6).

Answer» Let, `f(x) = g(x)+2x-1`
Then, `f(1) = g(2)+2-1 = 1=> g(1) = 0`
`f(2) = g(2)+4-1 = 3=> g(2) = 0`
`f(3) = g(3)+6-1 = 5=> g(3) = 0`
`f(4) = g(4)+8-1 = 7=> g(4) = 0`
`f(5) = g(5)+10-1 = 9=> g(5) = 0`
From the above, we can see that `1,2,3,4 and 5` are the roots of `g(x)`.
So, we can write,
`f(x) = 2009(x-1)(x-2)(x-3)(x-4)(x-5) +2x-1`
`:. f(6) = 2009**5**4**3**2**1+12-1=241091`
979.

Without actually calculating the cubes, find the value of 483 – 303 – 183.

Answer»

We know that x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx). 

If x + y + z = 0, then x3 + y3 + z3 – 3xyz = 0 or x3 + y3 + z3 = 3xyz. 

We have to find the value of 

483 – 303 – 183

= 483 + (–30)3 + (–18)3

Here, 48 + (–30) + (–18) = 0 

So, 483 + (–30)3 + (–18)3 

= 3 × 48 × (–30) × (–18)

= 77760

980.

If a,y and z are real numbers such that `x^2 + y^2 + 2 z^2 = 4x - 2z + 2yz - 5`, then the possible value of (x-y-z) is :

Answer» `x^2+y^2+2z^2 = 4x-2z+2yz-5`
`=>x^2+y^2+2z^2-4x-2z-2yz+5 = 0`
`=>(x-2)^2+(y-z)^2+(z+1)^2 = 0`
We know, `a^2+b^2+c^2 = 0` implies `a = b = c= 0`
`:. x-2 = 0=> x = 2`
`z+1 = 0=> z = -1`
`y-z = 0 => y = z => y = -1`
`:. x-y-z = 2+1+1 = 4`
981.

If x + y = 12 and xy = 27, find the value of x3 + y3 .

Answer»

x3 + y3 

= (x + y) (x2 – xy + y2

= (x + y) [(x + y)2 – 3xy]

= 12 [122 – 3 × 27] 

= 12 × 63 

= 756

982.

if alpha & beta are zeros of polynomial kx²+5x+2.such that 1/alpha²+1/beta² = 17/4.find the value of k

Answer»

α + ß = \(\frac{-b}a=\frac{-5}k\)

αß = \(\frac ca=\frac 2k\)

Now, \(\frac1{\alpha^2} + \frac1{\beta^2}\) = \(\frac{\alpha^2+\beta^2}{(\alpha\beta)^2}=\frac{(α+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}\)

\(\cfrac{(\frac{-5}k)^2-4/k}{(\frac 2k)^2}\) = \(\cfrac{\frac{25}{k^2}-\frac 4k}{\frac4{k^2}}\)

 = \(\frac{25-4k}4=\frac{17}4\)

⇒ 25 - 4k = 17

⇒ 4k = 25 - 17 = 8

⇒ k = 2

983.

If one zero of the polynomial f (x) = (k2 + 4) x2 + 13x + 4k is reciprocal of the other, then k =A. 2B. – 2C. 1D. – 1

Answer»

Given;

f(x) = (k2 + 4) x2 + 13x + 4k,

One zero of the polynomial is reciprocal of the other,

Let a be the one zero,

∴ The other zero will be 1/a

As we know that,

Product of the zeros = c/a = 4k/k2 + 4

∴ 4k/k2 + 4 = 1

⇒ 4k = k2 + 4

⇒ k 2 + 4 – 4k = 0

⇒ (k – 2)2 = 0

⇒ k = 2

So the value of k is 2

984.

If α and β are the zeroes of 2x2 + 5x - 9, then the value of αβ is(a) \(\frac{-5}2\) (b) \(\frac{5}2\)(c) \(\frac{-9}2\)(d) \(\frac{9}2\)

Answer»

(c) \(\frac{-9}2\)

Given: 

α and β be the zeroes of 2x2 + 5x – 9. 

If α + β are the zeroes, then x2 – (α + β) x + αβ is the required polynomial. 

The polynomial will be x2 – \(\frac{5}2x\) - \(\frac{9}2\).

∴ αβ = \(\frac{-9}2\)

985.

If α and β are the zeroes of the polynomial p(x) = 3x2 – x – 4, then αβ = ……………A) 1/3B) – 1/3C) 4/3D) -4/3

Answer»

Correct option is (D) -4/3

Product of zeros \(=\frac{\text{constant term}}{\text{coefficient of }x^2}=\frac{-4}3\)

\(\therefore\alpha\beta\) \(=\frac{-4}3\)

Correct option is D) -4/3

986.

If α and β are the zeroes of a polynomial such that α + β = -6 and αβ = 5, then find the polynomial.

Answer»

Given : α + β = -6 = sum of zeros and αβ = 5 = Product of zeroes 

We know that, if α and β are the zeros of the polynomial then the quadratic polynomial can be x2 – (α + β) x + αβ 

Now substituting the values, we get 

x2 – (-6)x + 5

= x2 + 6x + 5, which is required polynomial.

987.

If one zero of the polynomial f (x) = 5x2 + 13x + k is reciprocal of the , other, then the value of k = ……………B) 5 C) -5 D) - 13/5

Answer»

Correct option is (B) 5

Let \(\alpha\;and\;\frac1\alpha\) are zeros of given polynomial f(x).

\(\therefore\) Product of zeros \(=\frac{\text{constant term}}{\text{coefficient of }x^2}=\frac k5\)

\(\Rightarrow\) \(\alpha.\frac1\alpha\) \(=\frac k5\)

\(\Rightarrow\) \(\frac k5=1\)

\(\Rightarrow\) k = 5

Correct option is B) 5

988.

The area of a rectangular plot is 528 m2. Length of a plot (in m) is 1 more than twice of breadth. By forming quadratic equation, find the length and breadth of the plot.

Answer»

Let breadth of a plot is x m.

According to question,

Length of plot = (2 × breadth) + l 

= (2 × x + 1) = (2x + 1) m.

Area of rectangular plot = l × b 

= (2x + 1) × x = (2x2 + x) sq. m.

Given : Area of plot = 528 sq. m.

2x2 + x = 528

⇒ 2x2 + x – 528 = 0

Required quadratic equation is :

2x2 + x – 528 = 0

⇒ 2x2 + 33x – 32x – 528 = 0

⇒ x(2x + 33) – 16(2x + 33) = 0

⇒ (2x + 33) (x – 16) = 0

⇒ x – 16 = 0 or 2x + 33 = 0

⇒ x = 16 or x = -33/2 (impossible)

Hence, Length of plot is 2x + 1 

= 2 × 16 + 1 = 33 m

and breadth is 16 m.

989.

Find the zeroes of the quadratic polynomial. Find the sum and product of the zeroes and verify relationship to the coefficients of terms in the polynomial.p(x) = x2 – 4x + 3

Answer»

Given polynomial p(x) = x2 – 4x + 3 

We have, x2 – 4x + 3 = x2 – 3x – x + 3 

= x(x – 3) – 1 (x – 3) 

= (x – 3) (x – 1) 

So, the value of x2 – 4x + 3 is zero when x – 3 = 0

or x – 1 =0, i.e., 

when x = 3 or x = 1 So, the zeroes of x2 – 4x + 3 are 3 and 1

∴ Sum of the zeroes = 3 + 1 = 4

\(=-\frac{Coefficient\,of\,x}{Coefficient\,of\,x^2} = \frac{-(-4)}{1}=4\)

And product of the zeroes = 3 × 1 = 3

\(=\frac{Constant\,term}{Coefficient\,of\,x^2}= \frac{3}{1}=3\)

990.

xn – yn is divisible by (x – y) when n is ……………. A) a prime number B) an odd number C) an even number D) a natural number

Answer»

Correct option is (D) a natural number

\(x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y\) \(+x^{n-3}y^2+....+xy^{n-2}+y^{n-1}),\) where n is a natural number.

Thus, \(x^n-y^n\) is divisible by x - y when n is a natural number.

Correct option is D) a natural number

991.

What should be added to \(\cfrac{4x}{x^2-1}\) to get \(\cfrac{x+1}{x-1}\) ?A) \(\cfrac{x-1}{x^2-1}\)B) \(\cfrac{x-1}{x+1}\)C) \(\cfrac{x^2-1}{x+1}\)D) \(\cfrac{x^2+1}{x+1}\)

Answer»

Correct option is (B) \(\frac{x-1}{x+1}\)

Let p(x) should be added to \(\frac{4x}{x^2-1}\) to get \(\frac{x+1}{x-1}.\)

i.e.\(\frac{4x}{x^2-1}+p(x)\) \(=\frac{x+1}{x-1}\)

\(\Rightarrow\) p(x) \(=\frac{x+1}{x-1}-\frac{4x}{x^2-1}\)

\(=\frac{(x+1)^2-4x}{x^2-1}\) \(=\frac{x^2+2x+1-4x}{(x-1)(x+1)}\)

\(=\frac{x^2-2x+1}{(x-1)(x+1)}\) \(=\frac{(x-1)^2}{(x-1)(x+1)}\)

\(=\frac{x-1}{x+1}\)

Correct option is B) \(\cfrac{x-1}{x+1}\)

992.

What should be added to \(\cfrac{1}{x^2-7x+12}\) to get \(\cfrac{2}{x^2-6x+8}\)A) \(\cfrac{1}{x^2-5x+6}\)B) \(\cfrac{-1}{x^2-5x-6}\)C) \(\cfrac{4}{(x+3)(x+2)}\)D) \(\cfrac{2}{(x+3)(x-2)}\)

Answer»

Correct option is (A) \(\frac{1}{x^2-5x+6}\)

Let p(x) should be added to \(\frac{1}{x^2 -7x+12}\) to get \(\frac{2}{x^2 -6x+8}\)

\(\therefore\) \(p(x)+\frac{1}{x^2 -7x+12}\) \(=\frac{2}{x^2 -6x+8}\)

\(\Rightarrow\) \(p(x)=\frac{2}{x^2 -6x+8}\) \(-\frac{1}{x^2 -7x+12}\)

\(=\frac{2}{(x-4)(x-2)}-\frac{1}{(x-4)(x-3)}\)

\(=\frac{2(x-3)-(x-2)}{(x-2)(x-3)(x-4)}\) \(=\frac{2x-6-x+2}{(x-2)(x-3)(x-4)}\)

\(=\frac{x-4}{(x-2)(x-3)(x-4)}\)

\(=\frac{1}{(x-2)(x-3)}\) \(=\frac{1}{x^2-5x+6}\)

Correct option is A) \(\cfrac{1}{x^2-5x+6}\)

993.

Express \(\cfrac{2x^3-54}{x^3+3x^2+9x}\) in lowest terms A) \(\cfrac{2x-6}{x}\)B) \(\cfrac{2(x-4)}{x^2}\)C) \(\cfrac{2(4-x)}{x}\)D) \(\cfrac{6-2x}{x}\)

Answer»

Correct option is (A) \(\frac{2x-6}{x}\)

\(\frac{2x^3 -54}{x^3 +3x^2 +9x}\) \(=\frac{2(x^3-27)}{x(x^2+3x+9)}\)

\(=\frac{2(x-3)(x^2+3x+9)}{x(x^2+3x+9)}\)

\(=\frac{2(x-3)}{x}\) \(=\frac{2x-6}{x}\)

Correct option is A) \(\cfrac{2x-6}{x}\)