InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
1). 4902). 5603). 5404). 480 |
|
Answer» Red ? Green ? Blue = 5 ? 6 ? 9 Thus, let red, green, blue chocolates be 5x, 6x and 9x. Now, 16 green and 44 blue were added and the new ratio became 6 ? 8 ? 13 Thus, 5x ? 6x + 16 ? 9x + 44 = 6 ? 8 ? 13 ∴ 5x ? 6x + 16 = 3 ? 4 ∴ 20x = 18x + 48 ∴ x = 24 ∴ TOTAL amount = 5(24) + 6(24) + 16 + 9(24) + 44 = 540 |
|
| 152. |
A bag contains 25p coins, 50p coins and Rs. 1 coins in the ratio of 8 : 4 : 3. If the total value of all the coins in the bag is Rs. 35, find the difference in money (in Rs.) in 25p and 1 rupee denomination?1). 2.52). 53). 104). 15 |
|
Answer» Let the number of 25p coins, 50P coins and 1 rupee coins be 8X, 4x and 3x respectively. ⇒ (0.25)8x + (0.50)4x + (1)3x = 35 ⇒ x = 5 Required difference = 15 – 40 × 0.25 = Rs. 5 |
|
| 153. |
If A/3 = B/2 = C/5, then what is the value of ratio (C + A)2 : (A + B)2 : (B + C)2?1). 9 : 4 : 252). 25 : 4 : 93). 64 : 25 : 494). 49 : 25 : 64 |
|
Answer» ⇒ B = 2A/3 ⇒ C = 5A/3 To find: ratio (C + A)2 : (A + B)2 : (B + C)2 ⇒ (5A/3 + A)2 : (A + 2A/3)2 : (2A/3 + 5A/3)2 ⇒ (8A/3)2 : (5A/3)2 : (7A/3)2 ⇒ (8A)2 : (5A)2 : (7A)2 ∴ 64 : 25 : 49 |
|
| 154. |
Rs. 7750 is divided among X, Y and Z such that 3 times of X’s share is equal to 5 times of Y’s share which is equal to 2 times of Z’s share. What is the share (in Rs) of Z?1). 42502). 37503). 38754). 4475 |
|
Answer» Let 3X = 5Y = 2Z = k X = k/3, Y = k/5, Z = k/2 Sum of shares of all of them together = 7750 ⇒ (k/3) + (k/5) + (k/2) = 7750 ⇒ 31k = 7750 × 30 ⇒ k = (7750 × 30/31) = 7500 ∴ Share of Z = (k/2) = 7500/2 = Rs. 3750 |
|
| 155. |
The ratio of the numbers of male and female workers in a farm with 420 workers is 13 : 17. What will be the new ratio if 4 female workers leave the work?1). 91 : 812). 14 : 173). 9 : 104). 7 : 9 |
|
Answer» According to the given information, NUMBER of total workers in the FARM = 420 Ratio of men and women = 13 :17 Number of men workers = total number of workers $(\times \;\frac{{13}}{{13 + 17}})$ Number of men workers $(= \;420\; \times \frac{{13}}{{13 + 17}}{\rm{\;}} = {\rm{\;}}182)$ Number of FEMALE workers = 420 – 182 = 238 According to the given information, 4 female workers leave the work, the remaining number of female workers = 238 – 4 = 234 New ratio of MALE to female workers = 182 : 234 = 7 : 9 Hence new ratio is 7 : 9 |
|
| 156. |
The numerator of a number is smaller than its denominator by 5. If the numerator is increased by 8 and denominator by 6, then the new number becomes 5/7. Find the rational number.1). -4/32). 4/33). 1/24). -1/9 |
|
Answer» Let the denominator of rational number be x. Numerator = (x - 5) New denominator = (x + 6) New numerator = (x - 5 + 8) = (x + 3) Given that, (x + 3)/ (x + 6) = 5/7 ⇒ 7x + 21 = 5x + 30 ⇒ 2x = 9 ⇒ x = 9/2 Original rational number = (x - 5)/x = -(1/2)/(9/2) = -1/9 ∴ ANSWER is -1/9 |
|
| 157. |
In a hall, there are 396 children who have 5 marbles and there are 230 children who have 7 marbles. 198 children with 5 marbles each and 225 children with 7 marbles each are taken to a second hall. What will be the ratio of number of marbles in second hall to that in first hall?1). 170 : 1292). 231 : 1123). 471 : 1914). 513 : 205 |
|
Answer» There are 396 CHILDREN with 5 MARBLES. If 198 children with 5 marbles move to second hall, there will be 198 children left in FIRST hall with 5 marbles. ⇒ Number of marbles in second hall = (225 × 7 + 198 × 5) ⇒ Number of marbles in first hall = (198 × 5) + (5 × 7) ∴ Ratio of number of marbles in second hall to that in first hall = (225 × 7 + 198 × 5)/ (198 × 5) + (5 × 7) ⇒ 2565/1025 = 513 : 205 |
|
| 158. |
Gopal got twice as many marks in Physics as in Chemistry. The proportion of his marks in Physics and Biology is 6 : 5. What are his marks in Chemistry if his total marks in Physics, Chemistry and Biology are 210?1). 902). 453). 484). 75 |
|
Answer» Since the RATIO of marks obtained in Physics and Biology is 6 : 5 Let the marks obtained in Physics and biology be 6x and 5x respectively. According to the given INFORMATION, ⇒ Gopal’s marks in Chemistry = 3x ? Total Marks in Chemistry, Biology and Physics = 210 ⇒ 3x + 5x + 6x = 210 ⇒ 14X = 210 ∴ x = 15 ∴ Marks in Chemistry = 15x = 3 × 15 = 45 Gopal GOT 45 marks in Chemistry |
|
| 159. |
If Geeta's salary is 9/5 times of Hari's and Shalu's is 9/2 times of Hari's, what is the ratio of Geeta's salary to Shalu's?1). 10 : 812). 81 : 103). 5 : 24). 2 : 5 |
|
Answer» Let Hari’s salary be ‘x’ ∴ Ratio of Geeta’s to shalu’s salary = ((9x/5) /(9x/2) ) = 2/5 ∴ 2 : 5 |
|
| 160. |
1). Rs 480002). Rs 450003). Rs 600004). Rs 40000 |
|
Answer» <P>Let the INCOME of Saurabh and Truptil be 4p and 5p and their expenses be 3q and 4q. Given, each saves RS 12000 So, 4p – 3q = 12000 and 5p - 4q = 12000 On solving, we GET p = 12000 and q = 12000. ∴ Income of Saurabh = Rs 48000. |
|
| 161. |
A, B and C start a business and the ratio of their investment is 8 : 5 : 3. If at the end the ratio of their profits is 4 : 15 : 6, then what is the ratio of time period of their investment?1). 1 : 6 : 52). 2 : 3 : 43). 1 : 6 : 44). 2 : 6 : 3 |
|
Answer» We KNOW, Profit = investment × time ⇒ Time = profit/investment Given, ⇒ RATIO of their profit = 4 ? 15 ? 6 ⇒ Ratio of their investment = 8 ? 5 ? 3 ∴ Time = (4/8) : (15/5) : (6/3) = (1/2) : 3 : 2 = 1 : 6 : 4 |
|
| 162. |
1). 17/82). 21/103). 22/74). 23/11 |
|
Answer» Let $(E\; = \;\frac{{6{P^2}\; + \;5PQ\; + \;{Q^2}}}{{6{P^2} - 5PQ\; + \;{Q^2}}})$ $(\BEGIN{array}{l} \RIGHTARROW E\; = \;\frac{{6{P^2}\; + \;5PQ\; + \;{Q^2}}}{{6{P^2} - 5PQ\; + \;{Q^2}}}\; = \;\frac{{6{P^2}\; + \;3PQ\; + \;2PQ\; + \;{Q^2}}}{{6{P^2} - 3PQ - 2PQ\; + \;{Q^2}}}\\ \Rightarrow E\; = \;\frac{{\left[ {\left( {3P\; + \;Q} \right)\left( {2P\; + \;Q} \right)} \right]}}{{\left[ {\left( {3P - Q} \right)\left( {2P - Q} \right)} \right]}}\; = \;\left[ {\frac{{3P\; + \;Q}}{{3P - Q}}} \right] \times \left[ {\frac{{2P\; + \;Q}}{{2P - Q}}} \right]\\ \Rightarrow E\; = \;\left[ {\frac{{3 \times 3\; + \;2}}{{3 \times 3-2}}} \right] \times \left[ {\frac{{2 \times 3\; + \;2}}{{2 \times 3-2}}} \right]\; = \;\left( {\frac{{11}}{7}} \right) \times \left( {\frac{8}{4}} \right)\; = \;\frac{{22}}{7} \end{array})$ ∴ E = 22/7 |
|
| 163. |
By increasing the price of entry ticket to a fair in the ratio 17 : 19, the number of visitors to the fair has decreased in the ratio 11 : 10. In what ratio has the total collection increased or decreased?1). decreased in the ratio 190 : 1872). increased in the ratio 187 : 1903). increased in the ratio 170 : 2094). decreased in the ratio 209 : 170 |
|
Answer» Initial collection = 17 × 11 = 187 New collection = 19 × 10 = 190 Collection has INCREASED from 187 to 190 so answer is 187 : 190 |
|
| 164. |
An office opens at 8 AM and closes at 5 PM. The lunch interval is 90 minutes. The ratio of lunch interval to the total period of office hours is1). 1 : 62). 1 : 183). 6 : 14). 12 : 1 |
|
Answer» An office OPENS at 8 AM and closes at 5 PM. So, total PERIOD of office = 9 hours = 540 minutes And lunch interval = 90 minutes. ∴ The ratio of lunch interval to the total period of office hours = 90 : 540 = 1 : 6 |
|
| 165. |
If a ∶ b = 1 ∶ 2, b ∶ c = 3 ∶ 1, c ∶ d = 3 ∶ 2, and d ∶ e = 2 ∶ 1, then find a ∶ b ∶ c ∶ d ∶ e.1). 9 ∶ 8 ∶ 3 ∶ 4 ∶ 12). 9 ∶ 8 ∶ 3 ∶ 4 ∶ 23). 9 ∶ 18 ∶ 3 ∶ 4 ∶ 14). 9 ∶ 18 ∶ 6 ∶ 4 ∶ 2 |
|
Answer» a ? b = 1 ? 2, b ? C = 3 ? 1 ⇒ a ? b ? c = 3 ? 6 ? 2 c ? d = 3 ? 2 ⇒ a ? b ? c ? d = 9 ? 18 ? 6 ? 4 d ? e = 2 ? 1 ∴ a ? b ? c ? d ? e = 9 ? 18 ? 6 ? 4 ? 2 |
|
| 166. |
If 78 is divided into three parts which are in the ratio \(1:\frac{1}{3}:\frac{1}{6}\), the middle part is 1). \(9\frac{1}{3}\)2). 133). \(17\frac{1}{3}\)4). \(18\frac{1}{3}\) |
|
Answer» GIVEN, three parts are in the ratio $(1:\frac{1}{3}:\frac{1}{6})$ Let the first PART be a. Middle part = a/3 Last part = a/6 Given, 78 is DIVIDED into these three parts ∴ a + a/3 + a/6 = 78 ⇒ 9a/6 = 78 ⇒ a = 156/3 = 52 Now, Middle part = a/3 ⇒ Middle part = 52/3 = $(17\frac{1}{3})$ |
|
| 167. |
1). Rs. 82). Rs. 93). Rs. 134). Rs. 14 |
|
Answer» ? DIAMETER of the vessel = 14 CM ∴ RADIUS = 7 cm; We need to find out the surface area of the spherical vessel; Surface area of spherical vessel = 4πr2 ⇒ 4 × 22/7 × 72 ⇒ 616 cm2 ? The cost of PAINTING the spherical vessel is Rs. 8008; ∴ Cost of painting PER square centimetre = 8008/616 = Rs. 13 |
|
| 168. |
When a student, weighing 38 kgs, left a class, the average weight of the remaining 69 students increased by 200 g. What is the average weight of the remaining 69 students?1). 48 kg2). 52 kg3). 59 kg4). 57 kg |
|
Answer» Let the average weight of the 69 students be A. ∴ total weight of the 69 of them will be 69A. As question STATES, the total weight of the class = 69A + 38 When this STUDENT is also included, the average weight decreases by 0.2 KG; ⇒ (69A + 38)/70 = A - 0.2 ⇒ 69A + 38 = 70A - 14 ⇒ 70A - 69A = 38 + 14 ⇒ A = 52 ∴ Average weight of the remaining 69 students = 52 kg |
|
| 169. |
Find the fourth proportional to: 7, 15 and 141). 502). 603). 1204). 30 |
|
Answer» As we know that, Fourth proportional = (B × c)/a Where a,b and c are the 1st, 2nd and 3rd elements of proportion respectively Formula = Fourth proportional = (b × c)/a (14 × 15)/7 210/7 = 30 |
|
| 170. |
1). 6.482). 5.483). 9.484). None of these |
|
Answer» As per the given data Rise of the BALL for first bounce = 48 × 2/3 = 32 m Rise of the ball for SECOND bounce = 32 × 2/3 = 64/3 m Rise of the ball for third bounce = 64/3 × 2/3 = 128/9 m Rise of the ball for FOURTH bounce = 128/9 × 2/3 = 9.48 m |
|
| 171. |
The monthly salaries of A and B are in the ratio 13 : 15. If both of them get a salary increment of Rs. 3000 per month, the new ratio becomes 29 : 33. What is the new monthly salary of A?1). Rs. 290002). Rs. 300003). Rs. 330004). Rs. 26000 |
|
Answer» Let salaries of Rs. A and Rs. B be m and n respectively. Given, ⇒ m : n = 13 : 15 ⇒ m/n = 13/15 ⇒ n = 15m/13 Given, ⇒ (m + 3000)/(n + 3000) = 29 / 33 ⇒ 33M + 99000 = 29n + 87000 ⇒ 29n - 33m = 12000 ⇒ 29(15m/13) - 33m = 12000 ⇒ 435m/13 - 33m = 12000 ⇒ 435m - 429m = 12000 × 13 ⇒ 6m = 156000 ⇒ m = 26000 NEW salary of A = 26000 + 3000 = 29000 ∴ new salary of A is Rs. 29000. |
|
| 172. |
Find two numbers such that their mean proportional is 18 and the third proportional to them is 144.1). 6 and 422). 9 and 363). 3 and 184). 6 and 12 |
|
Answer» Let the NUMBERS are x and y, Mean proportional = √xy = 18 ⇒ xy = 324---- (1) THIRD proportional = y2/x = 144 ⇒ y2 = 144x---- (2) Putting the value of x from this in 1st equation, ⇒ y3/144 = 324 ⇒ y3 = 324 × 144 ⇒ y3 = 18 × 18 × 18 × 8 ⇒ y = 18 × 2 ∴ Two numbers are 9 and 36. |
|
| 173. |
1). c/d2). d/c3). 14). 0 |
|
Answer» GIVEN $(\frac{{3{\rm{a\;}} + {\rm{\;}}4{\rm{B}}}}{{3{\rm{c\;}} + {\rm{\;}}4{\rm{d}}}} = \frac{{3{\rm{a}} - 4{\rm{b}}}}{{3{\rm{c}} - 4{\rm{d}}}})$ $(\Rightarrow {\rm{\;}}\frac{{3{\rm{a\;}} + {\rm{\;}}4{\rm{b}}}}{{3{\rm{a}} - 4{\rm{b}}}} = \frac{{3{\rm{c\;}} + {\rm{\;}}4{\rm{d}}}}{{3{\rm{c}} - 4{\rm{d}}}})$ (By alternendo) $(\Rightarrow {\rm{\;}}\frac{{\left( {3{\rm{a\;}} + {\rm{\;}}4{\rm{b}}} \RIGHT){\rm{\;}} + {\rm{\;}}\left( {3{\rm{a}} - 4{\rm{b}}} \right)}}{{\left( {3{\rm{a\;}} + {\rm{\;}}4{\rm{b}}} \right) - \left( {3{\rm{a}} - 4{\rm{b}}} \right)}} = \frac{{\left( {3{\rm{c\;}} + {\rm{\;}}4{\rm{d}}} \right){\rm{\;}} + {\rm{\;}}\left( {3{\rm{c}} - 4{\rm{d}}} \right)}}{{\left( {3{\rm{c\;}} + {\rm{\;}}4{\rm{d}}} \right) - \left( {3{\rm{c}} - 4{\rm{d}}} \right)}})$ (By componendo and dividendo) $(\Rightarrow {\rm{\;}}\frac{{6{\rm{a}}}}{{8{\rm{b}}}} = \frac{{6{\rm{c}}}}{{8{\rm{d}}}})$ $( \Rightarrow {\rm{\;}}\frac{{\rm{a}}}{{\rm{b}}} = \frac{{\rm{c}}}{{\rm{d}}})$. |
|
| 174. |
1). 7502). 10603). 14754). 820 |
|
Answer» New sum after diminish the amount = 2489 – 12 – 12 – 5 = 2489 – 29 = 2460 |
|
| 175. |
If 3P/7 = 4Q/11, then what is the ratio of p and Q respectively?1). 12 : 772). 12 : 333). 28 : 334). 3 : 28 |
| Answer» | |
| 176. |
If 2x – 4Y = x + 3Y , find the value of\(\frac{{2x + 4Y}}{{2x - 4Y}}\)1). 9/52). 3/73). 16/94). 10/3 |
|
Answer» given that, 2x – 4Y = x + 3y ⇒ 2x – x = 3Y + 4Y ⇒ x = 7Y $(\Rightarrow \;\FRAC{x}{y} = \;\frac{7}{1})$ $(\Rightarrow \;\frac{{2x}}{{4y}} = \;\frac{{2 \times 7}}{{4 \times 1}})$(MULTIPLYING both SIDES by 2 and dividing both sides by 4) $(\Rightarrow \;\frac{{2x}}{{4y}} = \frac{{14}}{4})$ $(\Rightarrow \;\frac{{2x + 4y}}{{2x - 4y}} = \;\frac{{14 + 4}}{{14 - 4}})$(by componendo-dividendo) $(\Rightarrow \;\frac{{2x + 4y}}{{2x - 4Y}} = {\RM{\;}}\frac{{18}}{{10}} = \;\frac{9}{5})$ |
|
| 177. |
The ratio of two natural numbers P and Q is 2 : 3. If 12 is added to both of them, their ratio becomes 11 : 16. What will be the product of P and Q?1). 262002). 324003). 144004). 21600 |
|
Answer» The ratio of two NATURAL numbers P and Q is 2 : 3. Let the numbers be 2T and 3T. If 12 is added to both of them, their ratio BECOMES 11 : 16. ⇒ (2T + 12)/(3T + 12) = 11/16 ⇒ 32T + 192 = 33T + 132 ⇒ T = 60 ⇒ P = 2T = 120 and Q = 3T = 180 ∴ P × Q = 120 × 180 = 21600 |
|
| 178. |
A person has 25p, 50p and 1 rupee coins is 5 : 3 : 2. If the total number of coins is 200. He decides to convert all these in 5 rupee coins. Find the total number of 5 rupee coins received by him?1). 102). 193). 334). 40 |
|
Answer» Total number of 25P coins = (5/10) × 200 = 100 Total number of 50p coins = (3/10) × 200 = 60 Total number of 1 RUPEE coins = (2/10) × 200 = 40 Total MONEY with the person = 0.25 × 100 + 0.50 × 60 + 1 × 40 = Rs. 95 Number of 5 rupee coins = 95/5 = 19 |
|
| 179. |
1). 52). 33). 84). 2 |
|
Answer» GIVEN p = $(\FRAC{{4{\rm{xy}}}}{{{\rm{x\;}} + {\rm{\;y}}}})$ $(\Rightarrow {\rm{\;}}\frac{{\rm{p}}}{{2{\rm{x}}}} = \frac{{2{\rm{y}}}}{{{\rm{x\;}} + {\rm{\;y}}}})$ and $(\frac{{\rm{p}}}{{2{\rm{y}}}} = \frac{{2{\rm{x}}}}{{{\rm{x\;}} + {\rm{\;y}}}})$. Applying COMPONENDO and dividendo on both, we get $(\Rightarrow {\rm{\;}}\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{x}}}}{{{\rm{p}} - 2{\rm{x}}}} = \frac{{2{\rm{y\;}} + {\rm{\;}}\left( {{\rm{x\;}} + {\rm{\;y}}} \RIGHT)}}{{2{\rm{y}} - \left( {{\rm{x\;}} + {\rm{\;y}}} \right)}})$ and $(\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{y}}}}{{{\rm{p}} - 2{\rm{y}}}} = \frac{{2{\rm{x\;}} + {\rm{\;}}\left( {{\rm{x\;}} + {\rm{\;y}}} \right)}}{{2{\rm{x}} - \left( {{\rm{x\;}} + {\rm{\;y}}} \right)}})$ $(\Rightarrow {\rm{\;}}\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{x}}}}{{{\rm{p}} - 2{\rm{x}}}} = \frac{{{\rm{x\;}} + {\rm{\;}}3{\rm{y}}}}{{{\rm{y}} - {\rm{x}}}})$ and $(\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{y}}}}{{{\rm{p}} - 2{\rm{y}}}} = \frac{{3{\rm{x\;}} + {\rm{\;y}}}}{{{\rm{x}} - {\rm{y}}}})$ $(\begin{array}{l}\therefore {\rm{\;}}\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{x}}}}{{{\rm{p}} - 2{\rm{x}}}}{\rm{\;}} + {\rm{\;}}\frac{{{\rm{p\;}} + {\rm{\;}}2{\rm{y}}}}{{{\rm{p}} - 2{\rm{y}}}} = \frac{{{\rm{x\;}} + {\rm{\;}}3{\rm{y}}}}{{{\rm{y}} - {\rm{x}}}}{\rm{\;}} + {\rm{\;}}\frac{{3{\rm{x\;}} + {\rm{\;y}}}}{{{\rm{x}} - {\rm{y}}}}\\ = \frac{{3{\rm{x\;}} + {\rm{\;y}}}}{{{\rm{x}} - {\rm{y}}}} - \frac{{{\rm{x\;}} + {\rm{\;}}3{\rm{y}}}}{{{\rm{x}} - {\rm{y}}}} = \frac{{\left( {3{\rm{x\;}} + {\rm{\;y}}} \right) - \left( {{\rm{x\;}} + {\rm{\;}}3{\rm{y}}} \right)}}{{{\rm{x}} - {\rm{y}}}}\\ = \frac{{2{\rm{x}} - 2{\rm{y}}}}{{{\rm{x}} - {\rm{y}}}} = \frac{{2\left( {{\rm{x}} - {\rm{y}}} \right)}}{{{\rm{x}} - {\rm{y}}}} = 2\end{array})$ |
|
| 180. |
1). 12). 23). √24). √3 |
|
Answer» As we know, the compound ratio of ratios (a ? c) and (B ? d) is (ab ? cd) Hence, we have, ⇒ 1 ? (X + y)(x - y) = 1 ? y2 ⇒ 1 ? (x2 - y2) = 1 ? y2 ⇒ y2 = x2 - y2 ⇒ 2y2 = x2 ⇒ x2/y2 = 2 ⇒ x/y =√2 |
|
| 181. |
If a : b = 4 : 3, b : c = 2 : 7 and c : d = 3 : 4 then find a : b : c : d.1). 8 : 6 : 21 : 282). 8 : 9 : 31 : 283). 8 : 6 : 23 : 294). 9 : 6 : 21 : 38 |
|
Answer» Given that, a : b = 4 : 3, b : c = 2 : 7, c : d = 3 : 4 ⇒ a : c = 8 : 21 ⇒ a = 8c/21 ⇒ b : d = 3 : 14 ⇒ b = 3d/14 ⇒ a : d = 2 : 7 ⇒ a = 2d/7 ⇒ b = 3a/4, c = 21a/8, d = 7a/2 ⇒ a : b : c : d = a : 3a/4 : 21a/8 : 7a/2 ∴ a : b : c : d = 8 : 6 : 21 : 28 |
|
| 182. |
Rs. 1290 is divided among A, B and C in such a way that the ratio of amounts of A and B is 5: 6 and that of B and C is 4 : 7. Find the amounts (in rupees) received by each in alphabetic order.1). Rs. 224, Rs. 560, Rs. 1682). Rs. 198, Rs. 300, Rs. 2243). Rs. 300, Rs. 300, Rs. 1684). Rs. 300, Rs. 360, Rs. 630 |
|
Answer» RATIO of amount of A and B = 5 : 6 = 5/6 = (5 × 2)/(6 × 2) =10/12 Ratio of amount of B and C = 4 : 7 = 4/7 = (4 × 3)/(7 × 3) = 12/21 ∴ Ratio of SHARES of A, B and C = 10 : 12 : 21 Given, Amount to be divided = Rs. 1290 ∴ SHARE of A $(= \frac{{10}}{{10 + 12 + 21}} \times 1290 = \frac{{10}}{{43}} \times 1290 = Rs.\ 300)$ ∴ Share of B $(= \frac{{12}}{{10 + 12 + 21}} \times 1290 = \frac{{12}}{{43}} \times 1290 = Rs.\ 360)$ ∴ Share of C$(= \frac{{21}}{{10 + 12 + 21}} \times 1290 = \frac{{21}}{{43}} \times 1290 = Rs.\ 630)$ |
|
| 183. |
1). 572). 483). 514). 53 |
|
Answer» We KNOW that a : b : : c : x, then x = bc/a ⇒ Fourth PROPORTIONAL x = (17 × 27)/9 = 51 |
|